Correlation of doxorubicin footprints with deletion endpoints in lacO of E. coli. 1995

W D Sedwick, and R D Anderson, and J Baxter, and S Donover, and S Schneiter, and M L Veigl
Department of Medicine, Case Western Reserve University, Case Western Reserve Veterans Hospital, Cleveland, OH.

This study explored the possibility that the sequence location of doxorubicin-induced deletion endpoints might relate to DNA structural alterations caused by doxorubicin binding to DNA. The 3'-OH endpoints of doxorubicin-induced deletions terminating in the 35-bp region of lacO appear to distribute differently from spontaneous deletion endpoints. Doxorubicin-induced deletions focus in the 26-bp palindrome which is separated by a 9-bp region with no reverse complementary, whereas spontaneous deletion 3'-OH endpoints are found distributed throughout the operator region. In order to explore the mechanism of deletion induction by doxorubicin, drug footprinting studies were carried out with DNA labeled at the 5' end of each of the complementary DNA strands encompassed by lacO. Doxorubicin protected the 9-bp region between the palindromic sequences from DNase I cutting and caused enhanced DNase I cleavage at symmetrical sites in the palindrome, which were inherently resistant to the nuclease in the absence of the drug. These symmetrical sites also define regions in which the occurrence of deletion endpoints is enhanced 6-fold in the presence of doxorubicin. This enhanced cutting and mutation occur in regions of the palindrome that are flanked by expected doxorubicin binding sites, but are not themselves binding sites of the drug. Similarly, other sites where the frequency of deletion endpoints increased in response to doxorubicin occurred directly adjacent to regions where doxorubicin appeared to inhibit cutting by DNase I. These results suggest that the binding of doxorubicin in the palindrome directs both the frequency and the specificity of deletion formation in this gene region.

UI MeSH Term Description Entries
D007763 Lac Operon The genetic unit consisting of three structural genes, an operator and a regulatory gene. The regulatory gene controls the synthesis of the three structural genes: BETA-GALACTOSIDASE and beta-galactoside permease (involved with the metabolism of lactose), and beta-thiogalactoside acetyltransferase. Lac Gene,LacZ Genes,Lactose Operon,Gene, Lac,Gene, LacZ,Genes, Lac,Genes, LacZ,Lac Genes,Lac Operons,LacZ Gene,Lactose Operons,Operon, Lac,Operon, Lactose,Operons, Lac,Operons, Lactose
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009875 Operator Regions, Genetic The regulatory elements of an OPERON to which activators or repressors bind thereby effecting the transcription of GENES in the operon. Operator Region,Operator Regions,Operator, Genetic,Genetic Operator,Genetic Operator Region,Genetic Operator Regions,Genetic Operators,Operator Region, Genetic,Operators, Genetic,Region, Genetic Operator,Region, Operator,Regions, Genetic Operator,Regions, Operator
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D017384 Sequence Deletion Deletion of sequences of nucleic acids from the genetic material of an individual. Deletion Mutation,Deletion Mutations,Deletion, Sequence,Deletions, Sequence,Mutation, Deletion,Mutations, Deletion,Sequence Deletions

Related Publications

W D Sedwick, and R D Anderson, and J Baxter, and S Donover, and S Schneiter, and M L Veigl
January 1974, Molecular & general genetics : MGG,
W D Sedwick, and R D Anderson, and J Baxter, and S Donover, and S Schneiter, and M L Veigl
April 1989, Genetics,
W D Sedwick, and R D Anderson, and J Baxter, and S Donover, and S Schneiter, and M L Veigl
December 2014, Mutation research,
W D Sedwick, and R D Anderson, and J Baxter, and S Donover, and S Schneiter, and M L Veigl
February 1998, Journal of molecular biology,
W D Sedwick, and R D Anderson, and J Baxter, and S Donover, and S Schneiter, and M L Veigl
July 2008, Forensic science international,
W D Sedwick, and R D Anderson, and J Baxter, and S Donover, and S Schneiter, and M L Veigl
October 2014, BMC medical genetics,
W D Sedwick, and R D Anderson, and J Baxter, and S Donover, and S Schneiter, and M L Veigl
January 1971, Dansk tidsskrift for farmaci,
W D Sedwick, and R D Anderson, and J Baxter, and S Donover, and S Schneiter, and M L Veigl
November 2023, The Science of the total environment,
W D Sedwick, and R D Anderson, and J Baxter, and S Donover, and S Schneiter, and M L Veigl
July 2016, The Lancet. Oncology,
W D Sedwick, and R D Anderson, and J Baxter, and S Donover, and S Schneiter, and M L Veigl
June 1970, Biochemical and biophysical research communications,
Copied contents to your clipboard!