Phenolphthalein: induction of micronucleated erythrocytes in mice. 1995

K L Witt, and D K Gulati, and P Kaur, and M D Shelby
Oak Ridge Institute for Science and Education, TN 37831-0117.

Phenolphthalein was tested for the induction of micronucleated erythrocytes in mice. Results of an initial investigation revealed significant, dose-related increases in micronucleated polychromatic erythrocytes (MN-PCE) and normochromatic erythrocytes (MN-NCE) in peripheral blood samples of male and female mice exposed to 0.6% to 5% phenolphthalein (approximately 1100 to 10,000 mg/kg/day) in feed for 90 days (Dietz et al., 1992). Results from a second long-term feed study with Swiss CD-1 mice confirmed this effect. However, administration of comparable doses of phenolphthalein by corn oil gavage on two consecutive days gave negative results in a mouse bone marrow micronucleus test. Subsequent tests were performed to clarify the conflicting results seen in the chronic exposure, dosed-feed, peripheral blood studies and the acute, corn oil gavage, bone marrow studies. Phenolphthalein was administered to male B6C3F1 mice in feed (3%) for 14 days. Peripheral blood samples taken at 4, 7, and 14 days all showed significant increases in micronucleated PCE; bone marrow samples taken on days 7 and 14 also were clearly positive for micronucleus induction. Therefore, comparable results were obtainable from both bone marrow and peripheral blood analyses. Because of the negative results in the two-exposure gavage test, additional tests were then designed to investigate the effects of bolus vs continuous dosing, feeding vs gavage administration, and corn oil vs feed as a carrier for phenolphthalein. Results of these tests indicated that the rate of exposure to phenolphthalein affects the frequency of induced MN-PCE and that micronucleated erythrocytes can be induced by phenolphthalein either by feeding or by corn oil gavage administration. In all the acute exposure studies, relatively high doses of phenolphthalein (2000-6000 mg/kg/day for at least 2 days) were required to induce micronuclei. The positive results obtained with phenolphthalein in vivo were consistent with the results of an in vitro chromosomal aberration test in Chinese hamster ovary cells, where dose-related increases in aberrations were noted only in cells treated in the presence of induced rat liver S9.

UI MeSH Term Description Entries
D008297 Male Males
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D010635 Phenolphthaleins A family of 3,3-bis(p-hydroxyphenyl)phthalides. They are used as CATHARTICS, indicators, and COLORING AGENTS.
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005260 Female Females
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015162 Micronucleus Tests Induction and quantitative measurement of chromosomal damage leading to the formation of micronuclei (MICRONUCLEI, CHROMOSOME-DEFECTIVE) in cells which have been exposed to genotoxic agents or IONIZING RADIATION. Micronucleus Assays,Assay, Micronucleus,Assays, Micronucleus,Micronucleus Assay,Micronucleus Test,Test, Micronucleus,Tests, Micronucleus

Related Publications

K L Witt, and D K Gulati, and P Kaur, and M D Shelby
January 1990, Mutation research,
K L Witt, and D K Gulati, and P Kaur, and M D Shelby
May 1993, Mutagenesis,
K L Witt, and D K Gulati, and P Kaur, and M D Shelby
January 1998, Environmental and molecular mutagenesis,
K L Witt, and D K Gulati, and P Kaur, and M D Shelby
February 1992, Mutation research,
K L Witt, and D K Gulati, and P Kaur, and M D Shelby
October 1990, Cancer research,
K L Witt, and D K Gulati, and P Kaur, and M D Shelby
June 1995, Mutation research,
K L Witt, and D K Gulati, and P Kaur, and M D Shelby
October 1987, Mutation research,
K L Witt, and D K Gulati, and P Kaur, and M D Shelby
January 2003, Archives of medical research,
K L Witt, and D K Gulati, and P Kaur, and M D Shelby
January 1999, Environmental and molecular mutagenesis,
Copied contents to your clipboard!