Long-term culture of chronic myelogenous leukemia marrow cells on stem cell factor-deficient stroma favors benign progenitors. 1995

R Agarwal, and S Doren, and B Hicks, and C E Dunbar
Children's Hospital Medical Center, Cincinnati, OH.

Long-term culture of marrow from patients with chronic myelogenous leukemia (CML) has been reported to favor the outgrowth of bcr/abl- progenitor cells in some patients. We examined the effect of the presence of soluble or transmembrane forms of stem cell factor (SCF) in long-term cultures of CML marrow. CD34-enriched cells from CML patients in advanced chronic phase or accelerated phase were plated on immortalized fetal liver stromal cells from homozygous SCF-deficient SI/SI mice (SI/SI4) with or without the addition of soluble human SCF, SI/SI4 cells expressing high levels of the transmembrane form of human SCF (SI/SIh220), or primary human allogeneic stroma. Cells were removed from cultures and plated weekly in colony assays. The clonagenic cell output from cultures completely lacking SCF was lower over the first 2 to 3 weeks, but by 5 weeks was similar to the clonagenic cell output from the other culture conditions. Analysis of bcr/abl transcripts from individual colonies showed a lower percentage of malignant progenitors present in long-term cultures completely deficient in SCF than under the other culture conditions, particularly compared with primary human stroma-containing long-term cultures. SCF may specifically favor malignant versus benign progenitor cells present in the marrow of CML patients, and an abnormal proliferative response to SCF in very primitive cells may be an underlying defect in the pathophysiology of this disease.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003238 Connective Tissue Tissue that supports and binds other tissues. It consists of CONNECTIVE TISSUE CELLS embedded in a large amount of EXTRACELLULAR MATRIX. Connective Tissues,Tissue, Connective,Tissues, Connective
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

R Agarwal, and S Doren, and B Hicks, and C E Dunbar
April 1987, American journal of hematology,
R Agarwal, and S Doren, and B Hicks, and C E Dunbar
January 1993, Leukemia & lymphoma,
R Agarwal, and S Doren, and B Hicks, and C E Dunbar
January 1991, Haematologica,
R Agarwal, and S Doren, and B Hicks, and C E Dunbar
February 1998, Veterinary immunology and immunopathology,
R Agarwal, and S Doren, and B Hicks, and C E Dunbar
May 1987, Experimental hematology,
R Agarwal, and S Doren, and B Hicks, and C E Dunbar
October 1992, Experimental hematology,
R Agarwal, and S Doren, and B Hicks, and C E Dunbar
October 1993, Stem cells (Dayton, Ohio),
R Agarwal, and S Doren, and B Hicks, and C E Dunbar
December 1998, Bone marrow transplantation,
Copied contents to your clipboard!