Genetics of alkane oxidation by Pseudomonas oleovorans. 1994

J B van Beilen, and M G Wubbolts, and B Witholt
Institute of Biotechnology, ETH-Hönggerberg, Zürich, Switzerland.

Many Pseudomonads are able to use linear alkanes as sole carbon and energy source. The genetics and enzymology of alkane metabolism have been investigated in depth for Pseudomonas oleovorans, which is able to oxidize C5-C12 n-alkanes by virtue of two gene regions, localized on the OCT-plasmid. The so-called alk-genes have been cloned in pLAFR1, and were subsequent analyzed using minicell expression experiments, DNA sequencing and deletion analysis. This has led to the identification and characterization of of the alkBFGHJKL and alkST genes which encode all proteins necessary to convert alkanes to the corresponding acyl-CoA derivatives. These then enter the beta-oxidation-cycle, and can be utilized as carbon- and energy sources. Medium (C6-C12)- or long-chain (C13-C20) n-alkanes can be utilized by many strains, some of which have been partially characterized. The alkane-oxidizing enzymes used by some of these strains (e.g. two P. aeruginosa strains, a P. denitrificans strain and a marine Pseudomonas sp.) appear to be closely related to those encoded by the OCT-plasmid.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011549 Pseudomonas A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants. Chryseomonas,Pseudomona,Flavimonas
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D000473 Alkanes The generic name for the group of aliphatic hydrocarbons Cn-H2n+2. They are denoted by the suffix -ane. (Grant & Hackh's Chemical Dictionary, 5th ed) Alkane
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001673 Biodegradation, Environmental Elimination of ENVIRONMENTAL POLLUTANTS; PESTICIDES and other waste using living organisms, usually involving intervention of environmental or sanitation engineers. Bioremediation,Phytoremediation,Natural Attenuation, Pollution,Environmental Biodegradation,Pollution Natural Attenuation
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA

Related Publications

J B van Beilen, and M G Wubbolts, and B Witholt
January 1978, Methods in enzymology,
J B van Beilen, and M G Wubbolts, and B Witholt
April 1989, The Journal of biological chemistry,
J B van Beilen, and M G Wubbolts, and B Witholt
April 1973, Applied microbiology,
J B van Beilen, and M G Wubbolts, and B Witholt
May 1992, The Journal of biological chemistry,
J B van Beilen, and M G Wubbolts, and B Witholt
July 1973, Applied microbiology,
J B van Beilen, and M G Wubbolts, and B Witholt
July 1956, Applied microbiology,
J B van Beilen, and M G Wubbolts, and B Witholt
January 1977, Mikrobiologiia,
J B van Beilen, and M G Wubbolts, and B Witholt
September 1988, The Journal of biological chemistry,
J B van Beilen, and M G Wubbolts, and B Witholt
January 1977, Mikrobiologiia,
Copied contents to your clipboard!