T cell receptor-mediated signaling events in CD4+CD8+ thymocytes undergoing thymic selection: requirement of calcineurin activation for thymic positive selection but not negative selection. 1995

C R Wang, and K Hashimoto, and S Kubo, and T Yokochi, and M Kubo, and M Suzuki, and K Suzuki, and T Tada, and T Nakayama
Department of Immunology, Faculty of Medicine, University of Tokyo, Japan.

The goal of this study was to identify the differences of intracellular signals between the processes of thymic positive and negative selection. The activation of calcineurin, a calcium- and calmodulin-dependent phosphatase, is known to be an essential event in T cell activation via the T cell receptor (TCR). The effect of FK506, an inhibitor of calcineurin activation, on positive and negative selection in CD4+CD8+ double positive (DP) thymocytes was examined in normal mice and in a TCR transgenic mouse model. In vivo FK506 treatment blocked the generation of mature TCRhighCD4+CD8- and TCRhighCD4-CD8+ thymocytes, and the induction of CD69 expression on DP thymocytes. In addition, the shutdown of recombination activating gene 1 (RAG-1) transcription and the downregulation of CD4 and CD8 expression were inhibited by FK506 treatment suggesting that the activation of calcineurin is required for the first step (or the very early intracellular signaling events) of TCR-mediated positive selection of DP thymocytes. In contrast, FK506-sensitive calcineurin activation did not appear to be required for negative selection based on the observations that negative selection of TCR alpha beta T cells in the H-2b male thymus (a negative selecting environment) was not inhibited by in vivo treatment with FK506 and that there was no rescue of the endogenous superantigen-mediated clonal deletion of V beta 6 and V beta 11 thymocytes in FK506-treated CBA/J mice. DNA fragmentation induced by TCR activation of DP thymocytes in vitro was not affected by FK506. In addition, different effects of FK506 from Cyclosporin A on the T cell development in the thymus were demonstrated. The results of this study suggest that different signaling pathways work in positive and negative selection and that there is a differential dependence on calcineurin activation in the selection processes.

UI MeSH Term Description Entries
D008297 Male Males
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002148 Calmodulin-Binding Proteins Proteins which bind calmodulin. They are found in many tissues and have a variety of functions including F-actin cross-linking properties, inhibition of cyclic nucleotide phosphodiesterase and calcium and magnesium ATPases. Caldesmon,Calspectin,CaM-BP(80),Caldesmon (77),Calmodulin Binding Proteins,Proteins, Calmodulin-Binding
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005260 Female Females

Related Publications

C R Wang, and K Hashimoto, and S Kubo, and T Yokochi, and M Kubo, and M Suzuki, and K Suzuki, and T Tada, and T Nakayama
April 1995, Journal of immunology (Baltimore, Md. : 1950),
C R Wang, and K Hashimoto, and S Kubo, and T Yokochi, and M Kubo, and M Suzuki, and K Suzuki, and T Tada, and T Nakayama
April 1994, Proceedings of the National Academy of Sciences of the United States of America,
C R Wang, and K Hashimoto, and S Kubo, and T Yokochi, and M Kubo, and M Suzuki, and K Suzuki, and T Tada, and T Nakayama
September 1996, The Journal of experimental medicine,
C R Wang, and K Hashimoto, and S Kubo, and T Yokochi, and M Kubo, and M Suzuki, and K Suzuki, and T Tada, and T Nakayama
March 1995, Nature,
C R Wang, and K Hashimoto, and S Kubo, and T Yokochi, and M Kubo, and M Suzuki, and K Suzuki, and T Tada, and T Nakayama
October 2022, The Journal of experimental medicine,
C R Wang, and K Hashimoto, and S Kubo, and T Yokochi, and M Kubo, and M Suzuki, and K Suzuki, and T Tada, and T Nakayama
November 1991, Proceedings of the National Academy of Sciences of the United States of America,
C R Wang, and K Hashimoto, and S Kubo, and T Yokochi, and M Kubo, and M Suzuki, and K Suzuki, and T Tada, and T Nakayama
June 1998, Blood,
C R Wang, and K Hashimoto, and S Kubo, and T Yokochi, and M Kubo, and M Suzuki, and K Suzuki, and T Tada, and T Nakayama
June 1994, The Journal of experimental medicine,
C R Wang, and K Hashimoto, and S Kubo, and T Yokochi, and M Kubo, and M Suzuki, and K Suzuki, and T Tada, and T Nakayama
January 1993, European journal of immunology,
C R Wang, and K Hashimoto, and S Kubo, and T Yokochi, and M Kubo, and M Suzuki, and K Suzuki, and T Tada, and T Nakayama
January 1997, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!