Datura stramonium agglutinin released histamine from rat peritoneal mast cells that was inhibited by pertussis toxin, haptenic sugar and N-acetylglucosamine-specific lectins: involvement of glycoproteins with N-acetylglucosamine residues. 1994

K Matsuda, and J Aoki, and M K Uchida, and T Suzuki-Nishimura
Department of Molecular Pharmacology, Meiji College of Pharmacy, Tokyo, Japan.

The N-acetyl glucosamine (GlcNAc)-specific lectin Datura stramonium agglutinin (DSA) rapidly and sugar-specifically released histamine from rat peritoneal mast cells, and pertussis toxin (IAP) inhibited it, suggesting that DSA activated mast cells via an IAP-sensitive G protein pathway. The additive effects of DSA and basic secretagogues such as compound 48/80 that activate IAP-sensitive G protein directly suggest that they shared the same mechanism of action including involvement of the IAP-sensitive G protein. Using lectin-blotting, blots of the corresponding glycoproteins detected by DSA diminished by haptenic sugar or pretreatment of the cells with N-glycosidase F, suggesting that the binding of DSA was responsible for the mast cell activation. The other GlcNAc-specific lectins such as Phytolacca americana mitogen, Solanum tuberosum agglutinin and wheat germ agglutinin (WGA) inhibited the histamine release induced by DSA, suggesting that these lectins were antagonists, but DSA was an agonist. Sialic acid-specific Macckia amurensis mitogen (MAM) inhibited the histamine release, and neuraminidase-treatment decreased mast cell activation induced by DSA. At least four mast cell glycoproteins that have affinity to DSA, WGA and MAM and are sensitive to neuraminidase-treatment were detected by lectin-blotting. Some of them may be binding sites coupled to histamine release including the IAP-sensitive G protein pathway. DSA is a useful tool for studying signal transduction of mast cells including the involvement of the IAP-sensitive G protein.

UI MeSH Term Description Entries
D008297 Male Males
D008407 Mast Cells Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR. Basophils, Tissue,Basophil, Tissue,Cell, Mast,Cells, Mast,Mast Cell,Tissue Basophil,Tissue Basophils
D009439 Neuraminidase An enzyme that catalyzes the hydrolysis of alpha-2,3, alpha-2,6-, and alpha-2,8-glycosidic linkages (at a decreasing rate, respectively) of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrate. (From Enzyme Nomenclature, 1992) Sialidase,Exo-alpha-Sialidase,N-Acylneuraminate Glycohydrolases,Oligosaccharide Sialidase,Exo alpha Sialidase,Glycohydrolases, N-Acylneuraminate,N Acylneuraminate Glycohydrolases,Sialidase, Oligosaccharide
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D010529 Peritoneal Cavity The space enclosed by the peritoneum. It is divided into two portions, the greater sac and the lesser sac or omental bursa, which lies behind the STOMACH. The two sacs are connected by the foramen of Winslow, or epiploic foramen. Greater Sac,Lesser Sac,Omental Bursa,Bursa, Omental,Cavity, Peritoneal,Sac, Greater,Sac, Lesser
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D010946 Plants, Medicinal Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals. Herbs, Medicinal,Medicinal Herbs,Healing Plants,Medicinal Plants,Pharmaceutical Plants,Healing Plant,Herb, Medicinal,Medicinal Herb,Medicinal Plant,Pharmaceutical Plant,Plant, Healing,Plant, Medicinal,Plant, Pharmaceutical,Plants, Healing,Plants, Pharmaceutical
D010947 Plants, Toxic Plants or plant parts which are harmful to man or other animals. Plants, Poisonous,Plant, Poisonous,Plant, Toxic,Poisonous Plant,Poisonous Plants,Toxic Plant,Toxic Plants
D011094 Polyethyleneimine Strongly cationic polymer that binds to certain proteins; used as a marker in immunology, to precipitate and purify enzymes and lipids. Synonyms: aziridine polymer; Epamine; Epomine; ethylenimine polymer; Montrek; PEI; Polymin(e). Polyaziridine,Polyethylenimine,Polyaziridines,Polyethyleneimines,Polyethylenimines
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg

Related Publications

K Matsuda, and J Aoki, and M K Uchida, and T Suzuki-Nishimura
September 2002, Japanese journal of pharmacology,
K Matsuda, and J Aoki, and M K Uchida, and T Suzuki-Nishimura
October 1988, Journal of biochemistry,
K Matsuda, and J Aoki, and M K Uchida, and T Suzuki-Nishimura
April 1990, Agents and actions,
K Matsuda, and J Aoki, and M K Uchida, and T Suzuki-Nishimura
July 1993, The British journal of nutrition,
K Matsuda, and J Aoki, and M K Uchida, and T Suzuki-Nishimura
April 1988, European journal of pharmacology,
Copied contents to your clipboard!