Porcine aortic smooth muscle cells secrete a serine protease for insulin-like growth factor binding protein-2. 1995

A Gockerman, and D R Clemmons
Department of Medicine CB #7170, University of North Carolina School of Medicine, Chapel Hill 27599-7170.

Porcine aortic smooth muscle cells secrete two forms of insulin-like growth factor (IGF) binding proteins (IGFBP-2 and -4), and both forms have been shown to modulate IGF-I actions in this cell type. Recently, we showed that IGFBP-4 inhibited IGF-I action and that the cells produced a protease that cleaved IGFBP-4 into non-IGF binding fragments. After the cleavage of IGFBP-4, the cellular DNA synthesis response to IGF-I was enhanced. This study reports that these cells also secrete a protease for IGFBP-2. Like the IGFBP-4 protease, this protease is also secreted constitutively, but unlike the IGFBP-4 protease, its secretion is enhanced if the cells are serum-deprived for 24 hours before the collection of conditioned medium. The protease cleaved IGFBP-2 into 25- and 16-kD fragments, which had reduced IGF-I binding activity. Protease activity was enhanced by coincubation with IGF-I or IGF-II, and IGF-II was more potent than IGF-I. The protease is a serine protease, since its activity can be inhibited by 3,4-dichloroisocoumarin and aprotinin. It is also inhibited by EDTA, and its activity can be restored with calcium but not zinc. The heparin-binding serpins, specifically, heparin cofactor II and antithrombin III, are inhibitory. Heparin alone also had activity, and the combination of antithrombin III plus heparin caused complete inhibition. The conditioned medium also contained proteolytic activities for IGFBP-4 and -5 but it did not cleave IGFBP-1 and -3.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007611 Aprotinin A single-chain polypeptide derived from bovine tissues consisting of 58 amino-acid residues. It is an inhibitor of proteolytic enzymes including CHYMOTRYPSIN; KALLIKREIN; PLASMIN; and TRYPSIN. It is used in the treatment of HEMORRHAGE associated with raised plasma concentrations of plasmin. It is also used to reduce blood loss and transfusion requirements in patients at high risk of major blood loss during and following open heart surgery with EXTRACORPOREAL CIRCULATION. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1995) BPTI, Basic Pancreatic Trypsin Inhibitor,Basic Pancreatic Trypsin Inhibitor,Bovine Kunitz Pancreatic Trypsin Inhibitor,Kallikrein-Trypsin Inactivator,Kunitz Pancreatic Trypsin Inhibitor,Trypsin Inhibitor, Basic, Pancreatic,Trypsin Inhibitor, Kunitz, Pancreatic,Antilysin,Bovine Pancreatic Trypsin Inhibitor,Contrical,Contrykal,Dilmintal,Iniprol,Kontrikal,Kontrykal,Pulmin,Traskolan,Trasylol,Zymofren,Inactivator, Kallikrein-Trypsin,Kallikrein Trypsin Inactivator
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies
D003374 Coumarins Synthetic or naturally occurring substances related to coumarin, the delta-lactone of coumarinic acid. 1,2-Benzopyrone Derivatives,1,2-Benzopyrones,Coumarin Derivative,Coumarine,1,2-Benzo-Pyrones,Benzopyran-2-ones,Coumarin Derivatives,Coumarines,1,2 Benzo Pyrones,1,2 Benzopyrone Derivatives,1,2 Benzopyrones,Benzopyran 2 ones,Derivative, Coumarin,Derivatives, 1,2-Benzopyrone,Derivatives, Coumarin
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium

Related Publications

A Gockerman, and D R Clemmons
December 2001, American journal of physiology. Endocrinology and metabolism,
A Gockerman, and D R Clemmons
February 1994, The American journal of the medical sciences,
A Gockerman, and D R Clemmons
June 2000, Biology of reproduction,
A Gockerman, and D R Clemmons
January 1991, Growth factors (Chur, Switzerland),
A Gockerman, and D R Clemmons
March 2001, Arteriosclerosis, thrombosis, and vascular biology,
Copied contents to your clipboard!