Alterations in insulin-like growth factor (IGF)-dependent IGF-binding protein-4 proteolysis in transformed osteoblastic cells. 1995

S K Durham, and B L Riggs, and S A Harris, and C A Conover
Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, Minnesota 55905.

Insulin-like growth factor (IGF)-binding protein-4 (IGFBP-4) is secreted by a variety of osteoblastic cells and appears to be an integral component of bone cell physiology. We have previously reported that normal human osteoblast-like (hOB) cells secrete IGFBP-4 as well as a novel IGFBP-4 protease, which requires IGF for functional activity. In this study we assessed the IGFBP-4/IGFBP-4 protease system in transformed osteoblastic cells by Western ligand blotting and cell-free IGFBP-4 protease assays. Simian virus-40-immortalized hOB cells (HOBIT), human osteosarcoma cells (TE-85), and rat osteosarcoma cells (UMR 106-01, ROS 17/2.8) secrete IGFBP-4. In contrast to the rapid and dramatic proteolysis in hOB medium, medium conditioned by these cells had no apparent IGFBP-4 protease activity when assayed with exogenous IGF-II in culture or under cell-free conditions. Assayed in the presence of exogenous protease. HOBIT cells, but not the osteosarcoma cell lines, appeared to produce a cycloheximide-sensitive inhibitor of the IGFBP-4 proteolytic reaction. Transient cell transformation induced by incubating human osteoblasts transfected with a temperature-sensitive mutant of simian virus-40 T-antigen at the permissive temperature or by treating hOB cells with phorbol ester tumor promoters also resulted in inhibition of IGF-dependent IGFBP-4 proteolysis. Inhibition was observed if phorbol ester was added to the cultures at the time of medium change or after the protease had been expressed and secreted. Differences in IGFBP-4 proteolysis could not be accounted for by changes in IGFBP-4 messenger RNA expression or substrate levels. These data suggest that transformation is associated with alterations in the IGFBP-4/IGFBP-4 protease system in osteoblastic cells. Normal human osteoblasts secrete an IGF-dependent IGFBP-4 protease. The induction of an inhibitor of the IGF-dependent IGFBP-4 proteolytic reaction may be associated with early transformation processes. Fully tumorigenic bone cells expressed neither IGFBP-4 protease nor protease inhibitor activity.

UI MeSH Term Description Entries
D007335 Insulin-Like Growth Factor II A well-characterized neutral peptide believed to be secreted by the LIVER and to circulate in the BLOOD. It has growth-regulating, insulin-like and mitogenic activities. The growth factor has a major, but not absolute, dependence on SOMATOTROPIN. It is believed to be a major fetal growth factor in contrast to INSULIN-LIKE GROWTH FACTOR I, which is a major growth factor in adults. IGF-II,Multiplication-Stimulating Activity,Somatomedin MSA,IGF-2,Insulin Like Growth Factor II,Insulin-Like Somatomedin Peptide II,Multiplication-Stimulating Factor,Somatomedin A,Factor, Multiplication-Stimulating,Insulin Like Somatomedin Peptide II,Multiplication Stimulating Activity,Multiplication Stimulating Factor
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D010703 Phorbol Esters Tumor-promoting compounds obtained from CROTON OIL (Croton tiglium). Some of these are used in cell biological experiments as activators of protein kinase C. Phorbol Diester,Phorbol Ester,Phorbol Diesters,Diester, Phorbol,Diesters, Phorbol,Ester, Phorbol,Esters, Phorbol
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012516 Osteosarcoma A sarcoma originating in bone-forming cells, affecting the ends of long bones. It is the most common and most malignant of sarcomas of the bones, and occurs chiefly among 10- to 25-year-old youths. (From Stedman, 25th ed) Sarcoma, Osteogenic,Osteogenic Sarcoma,Osteosarcoma Tumor,Osteogenic Sarcomas,Osteosarcoma Tumors,Osteosarcomas,Sarcomas, Osteogenic,Tumor, Osteosarcoma,Tumors, Osteosarcoma

Related Publications

S K Durham, and B L Riggs, and S A Harris, and C A Conover
January 2003, Trends in endocrinology and metabolism: TEM,
S K Durham, and B L Riggs, and S A Harris, and C A Conover
November 1995, The Journal of biological chemistry,
S K Durham, and B L Riggs, and S A Harris, and C A Conover
November 1995, The Journal of biological chemistry,
S K Durham, and B L Riggs, and S A Harris, and C A Conover
January 1998, Endocrinology,
S K Durham, and B L Riggs, and S A Harris, and C A Conover
November 1992, Endocrinology,
S K Durham, and B L Riggs, and S A Harris, and C A Conover
September 1993, Endocrinology,
S K Durham, and B L Riggs, and S A Harris, and C A Conover
May 1994, The Journal of clinical investigation,
Copied contents to your clipboard!