Relationships between DNA fragmentation, chromatin condensation, and changes in flow cytometry profiles detected during apoptosis. 1995

O Tounekti, and J Belehradek, and L M Mir
URA 147 CNRS, Institut Gustave Roussy, Villejuif, France.

The determination of whether a cell dies by apoptosis as opposed to necrosis is usually best made on the basis of distinct structural changes in the chromatin. These changes include extensive condensation of the chromatin and DNA fragmentation. We have shown that the cytotoxic drug bleomycin (BLM) is able to cleave the DNA between the nucleosomes when it enters into the cell. If sufficient amounts of BLM are internalized, the nuclear morphological changes characteristic of apoptosis are detected. In this work, we describe the nuclear changes that occurred after DNA fragmentation as a function of the number of DNA double-strand breaks generated per cell and of the time after their generation. Our results show that DNA fragmentation and degradation of higher-order DNA structure were directly responsible for the nuclear morphological changes associated with apoptosis. During apoptosis reduced fluorescence with respect to the G0/G1 cell cycle region (the sub-G1 region) is often detected if fixed cells from cultures undergoing apoptosis are analyzed by flow cytometry. We demonstrate here that, depending on the extent of the DNA fragmentation and on ulterior changes in chromatin structure, the content of the fluorescent sub-G1 region can be either soluble pieces of DNA or apoptotic bodies or cells depleted in the DNA content by partial loss of fragmented DNA dissolved in the washing media and/or by the release of apoptotic bodies.

UI MeSH Term Description Entries
D001761 Bleomycin A complex of related glycopeptide antibiotics from Streptomyces verticillus consisting of bleomycin A2 and B2. It inhibits DNA metabolism and is used as an antineoplastic, especially for solid tumors. BLEO-cell,Blanoxan,Blenoxane,Bleolem,Bleomicina,Bleomycin A(2),Bleomycin A2,Bleomycin B(2),Bleomycin B2,Bleomycin Sulfate,Bleomycins,Bleomycinum Mack,Bléomycine Bellon,BLEO cell,BLEOcell,Bellon, Bléomycine,Mack, Bleomycinum,Sulfate, Bleomycin
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

O Tounekti, and J Belehradek, and L M Mir
July 1998, Proceedings of the National Academy of Sciences of the United States of America,
O Tounekti, and J Belehradek, and L M Mir
May 2006, The Journal of biological chemistry,
O Tounekti, and J Belehradek, and L M Mir
October 1992, International journal of andrology,
O Tounekti, and J Belehradek, and L M Mir
July 1996, Human reproduction (Oxford, England),
O Tounekti, and J Belehradek, and L M Mir
January 1993, European journal of histochemistry : EJH,
O Tounekti, and J Belehradek, and L M Mir
October 1998, Proceedings of the National Academy of Sciences of the United States of America,
O Tounekti, and J Belehradek, and L M Mir
September 1996, The Biochemical journal,
O Tounekti, and J Belehradek, and L M Mir
February 2005, Proceedings of the National Academy of Sciences of the United States of America,
O Tounekti, and J Belehradek, and L M Mir
February 1994, The Journal of experimental medicine,
Copied contents to your clipboard!