The glutamate uptake inhibitor L-trans-2,4-pyrrolidine dicarboxylate is neurotoxic in neonatal rat brain. 1994

J D Barks, and F S Silverstein
Department of Pediatrics, University of Michigan, Ann Arbor 48109-0646.

High-affinity glutamate uptake (HAGU) transporters rapidly remove released glutamate from the synaptic cleft. If HAGU is suppressed, neurotoxic concentrations of excitatory amino acids may accumulate. To seek further evidence in support of the neurotoxicity of endogenous glutamate in the developing brain, we assessed the neurotoxicity of the selective HAGU inhibitor L-trans-2,4-pyrrolidine dicarboxylate (L-PDC) in postnatal day 7 (PND 7) rats. The hippocampus of PND 7 rats is susceptible to EAA agonist-mediated injury; features of injury include atrophy and neuronal loss. Since HAGU is energy-dependent, we hypothesized that moderate hypoxia would increase L-PDC-mediated injury by further suppressing HAGU. L-PDC was stereotaxically injected into dorsolateral hippocampus of PND 7 rats (568 nmol, n = 20). Prior to return to the dam, rats were divided into two groups, one of which was subjected to moderate hypoxia (3 h, FiO2 = 0.08) (n = 11; 2 died acutely). On PND 12, hippocampal neuropathology was assessed by a blinded observer using a five-point scale and also by measuring hippocampal cross-sectional areas with computerized image analysis. Three brains were excluded from analysis, since markedly asymmetric tissue sectioning precluded valid side-to-side comparison of hippocampal areas. Injection of L-PDC alone elicited focal pyramidal cell loss (6/7); in the (L-PDC + hypoxia) group, injury was significantly increased (median scores: L-PDC = 2; [L-PDC + hypoxia] = 3.5; p < 0.005). Hippocampal atrophy was noted only after L-PDC + hypoxia (4/8) (percent right-left difference in mean hippocampal area [+/- SE]: L-PDC = 2.5% [+/- 2.6]; [L-PDC + hypoxia] = 8.9% [+/- 3.2]; p < 0.02). In tissue from PND 7 rats, L-PDC (10 microM) inhibited hippocampal synaptosomal HAGU by > 85%; at the same concentration, L-PDC did not displace [3H]glutamate from NMDA- or AMPA-sensitive hippocampal binding sites. These results support the hypothesis that increased synaptic accumulation of endogenous excitatory amino acid neurotransmitters may produce hippocampal injury in perinatal rodents.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D001927 Brain Diseases Pathologic conditions affecting the BRAIN, which is composed of the intracranial components of the CENTRAL NERVOUS SYSTEM. This includes (but is not limited to) the CEREBRAL CORTEX; intracranial white matter; BASAL GANGLIA; THALAMUS; HYPOTHALAMUS; BRAIN STEM; and CEREBELLUM. Intracranial Central Nervous System Disorders,Brain Disorders,CNS Disorders, Intracranial,Central Nervous System Disorders, Intracranial,Central Nervous System Intracranial Disorders,Encephalon Diseases,Encephalopathy,Intracranial CNS Disorders,Brain Disease,Brain Disorder,CNS Disorder, Intracranial,Encephalon Disease,Encephalopathies,Intracranial CNS Disorder
D002534 Hypoxia, Brain A reduction in brain oxygen supply due to ANOXEMIA (a reduced amount of oxygen being carried in the blood by HEMOGLOBIN), or to a restriction of the blood supply to the brain, or both. Severe hypoxia is referred to as anoxia and is a relatively common cause of injury to the central nervous system. Prolonged brain anoxia may lead to BRAIN DEATH or a PERSISTENT VEGETATIVE STATE. Histologically, this condition is characterized by neuronal loss which is most prominent in the HIPPOCAMPUS; GLOBUS PALLIDUS; CEREBELLUM; and inferior olives. Anoxia, Brain,Anoxic Encephalopathy,Brain Hypoxia,Cerebral Anoxia,Encephalopathy, Hypoxic,Hypoxic Encephalopathy,Anoxia, Cerebral,Anoxic Brain Damage,Brain Anoxia,Cerebral Hypoxia,Hypoxia, Cerebral,Hypoxic Brain Damage,Anoxic Encephalopathies,Brain Damage, Anoxic,Brain Damage, Hypoxic,Damage, Anoxic Brain,Damage, Hypoxic Brain,Encephalopathies, Anoxic,Encephalopathies, Hypoxic,Encephalopathy, Anoxic,Hypoxic Encephalopathies
D003720 Densitometry The measurement of the density of a material by measuring the amount of light or radiation passing through (or absorbed by) the material. Densitometries
D003998 Dicarboxylic Acids Acyclic acids that contain two carboxyl groups and have the formula HO2C-R-CO2H, where R may be an aromatic or aliphatic group. Acids, Dicarboxylic
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals

Related Publications

J D Barks, and F S Silverstein
October 1997, Brain research. Molecular brain research,
J D Barks, and F S Silverstein
November 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!