Development of wing sensory axons in the central nervous system of Drosophila during metamorphosis. 1995

K E Whitlock, and J Palka
Department of Zoology, University of Washington, Seattle 98195, USA.

The development of new, adult-specific axonal pathways in the central nervous system (CNS) of insects during metamorphosis is still largely uncharacterized. Here we used axonal labeling with DiI to describe the timing and pattern of growth of sensory axons originating in the wing of Drosophila as they establish their adult projection pattern in the CNS during pupal life. The wing of Drosophila carries a small number of readily identifiable sensory organs (sensilla) whose neurons are located in the periphery and whose axons travel along specific routes within the adult CNS. The neurons are born and undergo axonogenesis in a characteristic order. The order of axon arrival in the CNS appears to be the same as that of their development in the periphery. Within the CNS, the formation of four prominent axon bundles leading to distant termination sites is followed by the formation of a compact axon termination site near the point of wing nerve entry into the CNS. This sensillum-specific pattern persists into adulthood without discernible modification. We also find a small number of axons filled with DiI prior to the formation of the four permanent bundles. We have only been able to fill them for a few hours in early pupal life and therefore consider them to be transient. The bundles of wing sensory axons travel within tracts that contain other axons as well. Using immunocytochemistry, the tracts start to be histologically identifiable at around 12 h after pupariation (AP), and grow substantially as metamorphosis proceeds. Wing sensory neurons are found in the tracts by 18-20 h AP and the full adult pattern is established by 48 h AP. When sensory axons first enter the CNS, they fan out in the region where their appropriate tracts are located, but they do not wander extensively. They quickly form bundles that become increasingly compact over time. Calculations show that the rate of axon extension within the CNS varies from bundle to bundle and is equal to or greater than that of the same axons growing through wing tissue.

UI MeSH Term Description Entries
D007120 Immunochemistry Field of chemistry that pertains to immunological phenomena and the study of chemical reactions related to antigen stimulation of tissues. It includes physicochemical interactions between antigens and antibodies.
D008675 Metamorphosis, Biological Profound physical changes during maturation of living organisms from the immature forms to the adult forms, such as from TADPOLES to frogs; caterpillars to BUTTERFLIES. Biological Metamorphosis,Biological Metamorphoses,Metamorphoses, Biological
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013194 Staining and Labeling The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts. Histological Labeling,Staining,Histological Labelings,Labeling and Staining,Labeling, Histological,Labelings, Histological,Stainings
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014921 Wings, Animal Movable feathered or membranous paired appendages by means of which certain animals such as birds, bats, or insects are able to fly. Animal Wing,Animal Wings,Wing, Animal
D017950 Ganglia, Sensory Clusters of neurons in the somatic peripheral nervous system which contain the cell bodies of sensory nerve axons. Sensory ganglia may also have intrinsic interneurons and non-neuronal supporting cells. Sensory Ganglia,Ganglion, Sensory,Sensory Ganglion

Related Publications

K E Whitlock, and J Palka
October 1990, Journal of neurobiology,
K E Whitlock, and J Palka
January 1980, Basic life sciences,
K E Whitlock, and J Palka
May 1998, Current biology : CB,
K E Whitlock, and J Palka
February 2004, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
K E Whitlock, and J Palka
June 2019, Current opinion in neurobiology,
K E Whitlock, and J Palka
February 2021, Current opinion in insect science,
Copied contents to your clipboard!