Human immunodeficiency virus type 1 reverse transcriptase. 3'-Azidodeoxythymidine 5'-triphosphate inhibition indicates two-step binding for template-primer. 1995

M Jaju, and W A Beard, and S H Wilson
Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston 77555-1068, USA.

Human immunodeficiency virus type-1 (HIV-1) reverse transcriptase (RT) catalyzes DNA synthesis by an ordered sequential mechanism. After template-primer (T.P) binds to free enzyme, the deoxynucleoside triphosphate to be incorporated binds to the RT and T.P binary complex (RTT.P). After incorporation of the bound nucleotide, catalytic cycling is limited either by a conformational change (for processive synthesis) or release of the enzyme from the extended T.P (for single-nucleotide incorporation). To explore cycling through these alternate rate-limiting steps, we determined kinetic parameters for single-nucleotide incorporation by HXB2R HIV-1 RT with chain-terminating nucleotide substrates 3'-azido-3'-deoxythymidine triphosphate (AZTTP) and dideoxythymidine triphosphate on a homopolymeric T.P system, poly(rA)-oligo(dT)16. Inhibition of processive deoxythymidine monophosphate incorporation by these chain-terminating substrates was also examined. Because AZTTP is a substrate, its Km should be equivalent to Ki, and since Km for AZTTP should be influenced by the dissociation rate constant for RTT.P, we examined the effect of altering RTT.P dissociation on AZTTP kinetic parameters. The dissociation rate constant was modulated by making use of different T.P substrates, viral sources of RT, and a mutant RT altered at a residue that perturbs T.P binding. As expected from earlier work, the time course of AZTMP incorporation on poly(rA)-oligo(dT)16 was biphasic, with a burst followed by a slower steady-state phase representing kcat (0.42 min-1) which was similar to the rate constant for RTT.P dissociation. Additionally, Km for AZTTP (110 nM) was lower than its equilibrium dissociation constant (1200 nM). AZTTP inhibition (Ki,AZTTP) of processive dTMP incorporation and incorporation of a single nucleotide were similar. However, a simple correlation between the RTT.P dissociation rate constant and Ki,AZTTP was not observed. These results indicate that a simple ordered model for single-nucleotide incorporation is inadequate and that different forms of RTT.P exist which can limit catalysis. The results are discussed in the context of a two-step binding reaction for T.P where the binary RTT.P complex undergoes an isomerization before binding of the deoxynucleotide substrate.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D012194 RNA-Directed DNA Polymerase An enzyme that synthesizes DNA on an RNA template. It is encoded by the pol gene of retroviruses and by certain retrovirus-like elements. EC 2.7.7.49. DNA Polymerase, RNA-Directed,RNA-Dependent DNA Polymerase,Reverse Transcriptase,RNA Transcriptase,Revertase,DNA Polymerase, RNA Directed,DNA Polymerase, RNA-Dependent,RNA Dependent DNA Polymerase,RNA Directed DNA Polymerase
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic
D013942 Thymine Nucleotides Phosphate esters of THYMIDINE in N-glycosidic linkage with ribose or deoxyribose, as occurs in nucleic acids. (From Dorland, 28th ed, p1154) Thymidine Phosphates,Nucleotides, Thymine,Phosphates, Thymidine
D015215 Zidovudine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by an azido group. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. The compound is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA during reverse transcription. It improves immunologic function, partially reverses the HIV-induced neurological dysfunction, and improves certain other clinical abnormalities associated with AIDS. Its principal toxic effect is dose-dependent suppression of bone marrow, resulting in anemia and leukopenia. AZT (Antiviral),Azidothymidine,3'-Azido-2',3'-Dideoxythymidine,3'-Azido-3'-deoxythymidine,AZT Antiviral,AZT, Antiviral,BW A509U,BWA-509U,Retrovir,3' Azido 2',3' Dideoxythymidine,3' Azido 3' deoxythymidine,Antiviral AZT,BWA 509U,BWA509U
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D054303 HIV Reverse Transcriptase A reverse transcriptase encoded by the POL GENE of HIV. It is a heterodimer of 66 kDa and 51 kDa subunits that are derived from a common precursor protein. The heterodimer also includes an RNAse H activity (RIBONUCLEASE H, HUMAN IMMUNODEFICIENCY VIRUS) that plays an essential role the viral replication process. Reverse Transcriptase, HIV,Reverse Transcriptase, Human Immunodeficiency Virus,Transcriptase, HIV Reverse
D054306 Dideoxynucleotides The phosphate esters of DIDEOXYNUCLEOSIDES. Dideoxynucleotide Triphosphates,ddNTPs,Triphosphates, Dideoxynucleotide

Related Publications

M Jaju, and W A Beard, and S H Wilson
July 1991, The Journal of biological chemistry,
M Jaju, and W A Beard, and S H Wilson
September 1990, European journal of biochemistry,
M Jaju, and W A Beard, and S H Wilson
June 1996, The Journal of biological chemistry,
M Jaju, and W A Beard, and S H Wilson
October 1994, Antimicrobial agents and chemotherapy,
M Jaju, and W A Beard, and S H Wilson
February 1996, Biological chemistry Hoppe-Seyler,
Copied contents to your clipboard!