Phosphorylation of microtubule-associated proteins by protein kinase CK2 in neuritogenesis. 1994

J Avila, and L Ulloa, and J González, and F Moreno, and J Díaz-Nido
Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.

Phosphorylation of microtubule-associated protein MAP1B and the neuronal-specific beta III-tubulin isoform takes place during neurite growth in neuroblastoma cells. Protein kinase CK2 (formerly referred to as casein kinase 2) is possibly involved in beta III-tubulin phosphorylation. As for MAP1B, there are at least two types of phosphorylation; one catalyzed by proline-directed protein kinases and another catalyzed by CK2. Protein kinase CK2 is primarily localized to the nuclei in proliferating neuroblastoma cells, whereas an increased amount of the enzyme is present in the cytoplasm of postmitotic cells bearing neurites. Treatment of neuroblastoma cells with an antisense oligonucleotide which specifically results in CK2 catalytic subunit depletion inhibits neuritogenesis. CK2 depletion is accompanied by dephosphorylation of MAP1B on the corresponding phosphorylatable sites. This dephosphorylation is paralleled by a release of MAP1B from microtubules. These results suggest that MAP1B phosphorylation by CK2 may be required for the assembly of microtubules within neurites. Other neuronal cytoskeletal proteins including MAP1A and tau are also substrates for CK2, indicating a role for the enzyme in the regulation of cytoskeletal functions also in mature neurons.

UI MeSH Term Description Entries
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Avila, and L Ulloa, and J González, and F Moreno, and J Díaz-Nido
July 1984, The Journal of cell biology,
J Avila, and L Ulloa, and J González, and F Moreno, and J Díaz-Nido
January 1976, Biochemical Society transactions,
J Avila, and L Ulloa, and J González, and F Moreno, and J Díaz-Nido
August 1998, Die Nahrung,
J Avila, and L Ulloa, and J González, and F Moreno, and J Díaz-Nido
May 1996, The Journal of biological chemistry,
J Avila, and L Ulloa, and J González, and F Moreno, and J Díaz-Nido
February 2004, The Journal of biological chemistry,
J Avila, and L Ulloa, and J González, and F Moreno, and J Díaz-Nido
July 2006, The Journal of biological chemistry,
J Avila, and L Ulloa, and J González, and F Moreno, and J Díaz-Nido
April 2015, Journal of proteomics,
J Avila, and L Ulloa, and J González, and F Moreno, and J Díaz-Nido
January 1997, Journal of biochemistry,
J Avila, and L Ulloa, and J González, and F Moreno, and J Díaz-Nido
April 2009, Biochemical and biophysical research communications,
Copied contents to your clipboard!