Control of the Escherichia coli rrnB P1 promoter strength by ppGpp. 1995

X Zhang, and H Bremer
Molecular Program, University of Texas at Dallas, Richardson 75083-0688, USA.

Fusions of the rrnB P1 and P2 promoters, and of the tandem P1-P2 combination, to a wild-type lacZ gene were constructed on plasmids and recombined into the mal region of the bacterial chromosome, close to the normal location and in the normal orientation of rrnB. The upstream activator region (Fis-binding sites) was always present with the P1 promoter, and all constructs contained the box A antitermination site of rRNA genes. Using these constructs, beta-galactosidase specific activities were measured in Escherichia coli strains carrying either both ppGpp synthetases, PSI and PSII (relA+ spoT+), or only PSII (delta relA spoT+), or neither (delta relA delta spoT), using different media supporting growth rates between 0.6 and 2.8 doublings/h at 37 degrees C. The beta-galactosidase activities were used to estimate the relative strength of the rrnB P1 promoter in comparison to the isolated rrnB P2 promoter. Promoter strength (transcripts initiated per min per promoter per free RNA polymerase concentration) was distinguished from promoter activity (transcripts initiated per min per promoter). In ppGpp-synthesizing (wild-type) bacteria, the relative strength of the rrnB P1 promoter increased nearly 10-fold with increasing growth rate from 0.17 to 1.5, but in the ppGpp-less double mutants it decreased by 20% from 1.7 to 1.5. Thus, at low or zero levels of ppGpp, the P1 promoter was 1.5-1.7 times stronger than the isolated P2 promoter. These results indicate that the normal growth rate control of the rrnB P1 promoter strength requires ppGpp, and that the strength is reduced at basal levels of ppGpp found during exponential growth. No additional ppGpp-independent control of the rrnB P1 promoter strength was evident. From the beta-galactosidase data and previously determined values of rRNA gene activities, the activities of the isolated rrnB P1 and P2 promoters, and of the P2 promoter in the tandem combination, were estimated. With increasing growth rate, the activity of the isolated P2 promoter increased 6-fold from 6 to 33 initiations/min, while the activity of the isolated P1 promoter increased 24-fold from 2 to 54 initiations/min. The increasing activity of the isolated P2 promoter is assumed to reflect the increasing RNA polymerase concentration at constant promoter strength, whereas the steeper increase in P1 promoter activity reflects increases in both polymerase concentration and promoter strength. When in tandem with P1, the P2 promoter activity is inferred to decrease as the P1 promoter activity increases.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006159 Guanosine Tetraphosphate Guanosine 5'-diphosphate 2'(3')-diphosphate. A guanine nucleotide containing four phosphate groups. Two phosphate groups are esterified to the sugar moiety in the 5' position and the other two in the 2' or 3' position. This nucleotide serves as a messenger to turn off the synthesis of ribosomal RNA when amino acids are not available for protein synthesis. Synonym: magic spot I. Alarmone ppGpp,Bacterial Magic Spot ppGpp,Guanosine 5'-(trihydrogen diphosphate), mono(trihydrogen diphosphate) (ester),Guanosine 5'-diphosphate 2'(3')-diphosphate,ppGpp,Guanosine 3'-Diphosphate 5'-Diphosphate,Guanosine 5'-Diphosphate 3'-Diphosphate,3'-Diphosphate 5'-Diphosphate, Guanosine,5'-Diphosphate 3'-Diphosphate, Guanosine,Guanosine 3' Diphosphate 5' Diphosphate,Guanosine 5' Diphosphate 3' Diphosphate,Tetraphosphate, Guanosine,ppGpp, Alarmone
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases

Related Publications

X Zhang, and H Bremer
September 1994, Journal of bacteriology,
X Zhang, and H Bremer
October 1992, The Journal of biological chemistry,
X Zhang, and H Bremer
June 2006, The Journal of biological chemistry,
X Zhang, and H Bremer
November 1993, The Journal of biological chemistry,
X Zhang, and H Bremer
January 2003, Journal of bacteriology,
Copied contents to your clipboard!