Cathepsin B in angiogenesis of human prostate: an immunohistochemical and immunoelectron microscopic analysis. 1995

A A Sinha, and D F Gleason, and N A Staley, and M J Wilson, and M Sameni, and B F Sloane
Research Service, Veterans Affairs Medical Center, Minneapolis, Minnesota, USA.

BACKGROUND Angiogenesis (or neovascularization) is required for the growth of solid organ tumors and precedes invasion of the adjacent stroma by neoplastic cells. We investigated the relative density and distribution of cathepsin B (CB) immunostained microvessels (i.e., small blood vessels and capillaries) in benign prostatic hyperplasia (BPH), prostatic intraepithelial neoplasia (PIN), and prostatic adenocarcinoma (CAP) by immunocytochemical localization of an antibody directed against a cathepsin B-derived synthetic peptide (Syn-CB). METHODS We studied 16 formalin-fixed, prostatectomy specimens that were embedded in paraffin/paraplast for histological examination by hematoxylin and eosin and immuno-localization of the Syn-CB antibody. Selected paraformaldehyde-fixed specimens were embedded in K4M Lowicryl or LRWhite resins. We localized the antibody in thin sections using immunoelectron microscopy techniques. RESULTS Eight patients had BPH [4 patients with BPH alone, 2 with BPH and PIN, and 2 with BPH and CAP]. Ten cancer cases included one with Gleason histologic score 4, two with score 6, four with score 7, and three with score 8. In CAP cases, Gleason score 6 and 7 tumors had more microvessels than the score 4 or 8 tumors. In both BPH and CAP cases, the antibody was localized chiefly in the endothelial cells of microvessels, but occasionally in ductal and glandular epithelial cells. Ultrastructurally, CB-immunoreactive gold particles were markedly increased at the luminal and basal plasma membrane surfaces and folds of endothelial cells in neoplastic prostate, but not in the endothelial cells of BPH. Furthermore, the presence of CB localizing gold particles in collagen and smooth muscle fibers near the microvessels indicated leakage of the enzyme in prostatic stroma of neoplastic prostate. Similar leakage was not observed in BPH. Morphometric analysis showed that the relative density of microvessels increased two to three times in cancer patients when compared to patients with BPH alone. Our study also indicated that BPH associated with PIN or CAP had an increased density of microvessels when compared to BPH alone. CONCLUSIONS Our study showed that the relative density and distribution of microvessels are the most important features of neovascularization in prostatic tumors. The relative density of microvessels increased in PIN and CAP when compared to BPH alone. Although the localization of CB is associated with lysosomes of endothelial cells in both BPH and CAP, there is a greater association of CB with the plasma membranes of endothelial cells in CAP than BPH. Immunoelectron microscopy provided evidence that CB might be involved in dissolution of basement membranes in neoplastic tumors during angiogenesis. CB localization has the potential of defining a role for this protease in degradation of extracellular matrix constituents during early steps of angiogenesis.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009389 Neovascularization, Pathologic A pathologic process consisting of the proliferation of blood vessels in abnormal tissues or in abnormal positions. Angiogenesis, Pathologic,Angiogenesis, Pathological,Neovascularization, Pathological,Pathologic Angiogenesis,Pathologic Neovascularization,Pathological Angiogenesis,Pathological Neovascularization
D011467 Prostate A gland in males that surrounds the neck of the URINARY BLADDER and the URETHRA. It secretes a substance that liquefies coagulated semen. It is situated in the pelvic cavity behind the lower part of the PUBIC SYMPHYSIS, above the deep layer of the triangular ligament, and rests upon the RECTUM. Prostates
D011470 Prostatic Hyperplasia Increase in constituent cells in the PROSTATE, leading to enlargement of the organ (hypertrophy) and adverse impact on the lower urinary tract function. This can be caused by increased rate of cell proliferation, reduced rate of cell death, or both. Adenoma, Prostatic,Benign Prostatic Hyperplasia,Prostatic Adenoma,Prostatic Hyperplasia, Benign,Prostatic Hypertrophy,Prostatic Hypertrophy, Benign,Adenomas, Prostatic,Benign Prostatic Hyperplasias,Benign Prostatic Hypertrophy,Hyperplasia, Benign Prostatic,Hyperplasia, Prostatic,Hyperplasias, Benign Prostatic,Hypertrophies, Prostatic,Hypertrophy, Benign Prostatic,Hypertrophy, Prostatic,Prostatic Adenomas,Prostatic Hyperplasias, Benign,Prostatic Hypertrophies
D011471 Prostatic Neoplasms Tumors or cancer of the PROSTATE. Cancer of Prostate,Prostate Cancer,Cancer of the Prostate,Neoplasms, Prostate,Neoplasms, Prostatic,Prostate Neoplasms,Prostatic Cancer,Cancer, Prostate,Cancer, Prostatic,Cancers, Prostate,Cancers, Prostatic,Neoplasm, Prostate,Neoplasm, Prostatic,Prostate Cancers,Prostate Neoplasm,Prostatic Cancers,Prostatic Neoplasm
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D002401 Cathepsin B A lysosomal cysteine proteinase with a specificity similar to that of PAPAIN. The enzyme is present in a variety of tissues and is important in many physiological and pathological processes. In pathology, cathepsin B has been found to be involved in DEMYELINATION; EMPHYSEMA; RHEUMATOID ARTHRITIS, and NEOPLASM INVASIVENESS. Cathepsin B-Like Proteinase,Cathepsin B1,Cathepsin B Like Proteinase,Proteinase, Cathepsin B-Like
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

A A Sinha, and D F Gleason, and N A Staley, and M J Wilson, and M Sameni, and B F Sloane
June 1995, The British journal of dermatology,
A A Sinha, and D F Gleason, and N A Staley, and M J Wilson, and M Sameni, and B F Sloane
December 1990, The Anatomical record,
A A Sinha, and D F Gleason, and N A Staley, and M J Wilson, and M Sameni, and B F Sloane
January 2005, Ultrastructural pathology,
A A Sinha, and D F Gleason, and N A Staley, and M J Wilson, and M Sameni, and B F Sloane
November 2001, The Prostate,
A A Sinha, and D F Gleason, and N A Staley, and M J Wilson, and M Sameni, and B F Sloane
January 1990, Acta neuropathologica,
A A Sinha, and D F Gleason, and N A Staley, and M J Wilson, and M Sameni, and B F Sloane
May 1994, Journal of the American Academy of Dermatology,
A A Sinha, and D F Gleason, and N A Staley, and M J Wilson, and M Sameni, and B F Sloane
September 1994, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc,
A A Sinha, and D F Gleason, and N A Staley, and M J Wilson, and M Sameni, and B F Sloane
October 1990, Pathology, research and practice,
A A Sinha, and D F Gleason, and N A Staley, and M J Wilson, and M Sameni, and B F Sloane
January 1983, Virchows Archiv. A, Pathological anatomy and histopathology,
A A Sinha, and D F Gleason, and N A Staley, and M J Wilson, and M Sameni, and B F Sloane
January 2002, Ultrastructural pathology,
Copied contents to your clipboard!