Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. 1995

K Matsuzaki, and O Murase, and N Fujii, and K Miyajima
Faculty of Pharmaceutical Sciences, Kyoto University, Japan.

A channel-forming antimicrobial peptide, magainin 2, has been shown to translocate across phospholipid bilayers by forming a pore comprising multimeric peptides. The translocation was demonstrated by four sets of experiments by use of resonance energy transfer from tryptophan introduced into the peptide to a dansyl chromophore incorporated into the lipid membrane. The translocation was coupled to pore formation, as detected by the dye efflux from the lipid vesicles; about 30% of the total peptide molecules translocated into the inner leaflets over 10 min, while 80% of the dye molecules leaked out at a lipid to peptide ratio of 57. This novel model can explain the problems debated so far, i.e., the peptide forms an ion channel whereas the magainin helix essentially lies parallel to the membrane surface. Channel (pore) formation in the vesicles is a transient process observable mainly during the early stage of the peptide membrane interactions.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004735 Energy Transfer The transfer of energy of a given form among different scales of motion. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed). It includes the transfer of kinetic energy and the transfer of chemical energy. The transfer of chemical energy from one molecule to another depends on proximity of molecules so it is often used as in techniques to measure distance such as the use of FORSTER RESONANCE ENERGY TRANSFER. Transfer, Energy
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

K Matsuzaki, and O Murase, and N Fujii, and K Miyajima
March 2022, Physical chemistry chemical physics : PCCP,
K Matsuzaki, and O Murase, and N Fujii, and K Miyajima
October 2020, Biochimica et biophysica acta. Biomembranes,
K Matsuzaki, and O Murase, and N Fujii, and K Miyajima
January 2024, The Journal of chemical physics,
K Matsuzaki, and O Murase, and N Fujii, and K Miyajima
October 2007, Journal of controlled release : official journal of the Controlled Release Society,
K Matsuzaki, and O Murase, and N Fujii, and K Miyajima
September 2010, The journal of physical chemistry. B,
K Matsuzaki, and O Murase, and N Fujii, and K Miyajima
March 2015, Langmuir : the ACS journal of surfaces and colloids,
K Matsuzaki, and O Murase, and N Fujii, and K Miyajima
October 2021, Biochimica et biophysica acta. Biomembranes,
K Matsuzaki, and O Murase, and N Fujii, and K Miyajima
January 2016, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry,
K Matsuzaki, and O Murase, and N Fujii, and K Miyajima
November 2006, Physical review letters,
K Matsuzaki, and O Murase, and N Fujii, and K Miyajima
March 2018, Langmuir : the ACS journal of surfaces and colloids,
Copied contents to your clipboard!