Syk and ZAP-70 mediate recruitment of p56lck/CD4 to the activated T cell receptor/CD3/zeta complex. 1995

M Thome, and P Duplay, and M Guttinger, and O Acuto
Department of Immunology, Institut Pasteur, Paris, France.

During antigen recognition by T cells, CD4 and the T-cell receptor (TCR)/CD3/zeta complex are thought to interact with the same major histocompatibility complex II molecule in a stable ternary complex. Evidence has suggested that the association of CD4 with TCR/CD3/zeta requires the interaction of the protein tyrosine kinase p56lck with CD4. We have taken a biochemical approach to understand the mechanism by which p56lck and, in particular, its src homology (SH) 2 domain contributes to the association of CD4 with TCR/CD3/zeta during activation. We have previously shown that the p56lck SH2 domain binds directly to tyrosine-phosphorylated ZAP-70. Here we formally demonstrate the in vivo association of p56lck with the homologous protein tyrosine kinases Syk and ZAP-70 after CD3 stimulation of Jurkat cells. A tyrosine-phosphorylated peptide containing the sequence predicted to be optimal for binding to the SH2 domain of src family kinases specifically competes for this association, indicating that tyrosine-phosphorylated ZAP-70 and Syk bind to p56lck by an SH2-mediated interaction. We also show that the same peptide is able to compete for the activation-dependent TCR/CD4 association in Jurkat cells. Moreover, ZAP-70 and CD4 cocap only after CD3 stimulation in human T lymphoblasts. We propose that the interaction of the p56lck SH2 domain with zeta-associated tyrosine-phosphorylated ZAP-70 and/or Syk enables CD4 to associate with antigen-stimulated TCR/CD3/zeta complexes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004792 Enzyme Precursors Physiologically inactive substances that can be converted to active enzymes. Enzyme Precursor,Proenzyme,Proenzymes,Zymogen,Zymogens,Precursor, Enzyme,Precursors, Enzyme

Related Publications

M Thome, and P Duplay, and M Guttinger, and O Acuto
September 1996, European journal of immunology,
M Thome, and P Duplay, and M Guttinger, and O Acuto
May 1996, Biochemical and biophysical research communications,
M Thome, and P Duplay, and M Guttinger, and O Acuto
March 1998, Cell research,
M Thome, and P Duplay, and M Guttinger, and O Acuto
September 1993, The Journal of biological chemistry,
M Thome, and P Duplay, and M Guttinger, and O Acuto
April 1999, Experimental gerontology,
M Thome, and P Duplay, and M Guttinger, and O Acuto
April 2003, Journal of immunology (Baltimore, Md. : 1950),
M Thome, and P Duplay, and M Guttinger, and O Acuto
August 1996, The Journal of biological chemistry,
M Thome, and P Duplay, and M Guttinger, and O Acuto
August 2004, Blood,
M Thome, and P Duplay, and M Guttinger, and O Acuto
April 1992, The Journal of biological chemistry,
M Thome, and P Duplay, and M Guttinger, and O Acuto
October 1995, The Journal of experimental medicine,
Copied contents to your clipboard!