PTB domain binding to signaling proteins through a sequence motif containing phosphotyrosine. 1995

W M Kavanaugh, and C W Turck, and L T Williams
Department of Medicine, University of California, San Francisco 94143, USA.

Src homology 2 (SH2) domains mediate assembly of signaling complexes by binding specifically to tyrosine-phosphorylated proteins. A phosphotyrosine binding (PTB) domain has been identified which also binds specifically to tyrosine-phosphorylated targets, but is structurally different from SH2 domains. Expression cloning was used to identify targets of PTB domains. PTB domains bound to phosphotyrosine within a sequence motif, asparagine-X1-X2-phosphotyrosine (where X represents any amino acid), that is found in many signaling proteins and is not recognized by SH2 domains. Mutational studies indicated that high affinity binding of PTB domains may require a specific conformation of the motif.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010748 Phosphopeptides PEPTIDES that incorporate a phosphate group via PHOSPHORYLATION. Phosphopeptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

W M Kavanaugh, and C W Turck, and L T Williams
January 1995, Progress in biophysics and molecular biology,
W M Kavanaugh, and C W Turck, and L T Williams
January 2006, Journal of biomolecular NMR,
W M Kavanaugh, and C W Turck, and L T Williams
July 1997, Proceedings of the National Academy of Sciences of the United States of America,
W M Kavanaugh, and C W Turck, and L T Williams
December 2007, Molecular and cellular biology,
W M Kavanaugh, and C W Turck, and L T Williams
December 2013, Cold Spring Harbor perspectives in biology,
W M Kavanaugh, and C W Turck, and L T Williams
November 2010, The Journal of biological chemistry,
W M Kavanaugh, and C W Turck, and L T Williams
May 1997, Biochemical and biophysical research communications,
W M Kavanaugh, and C W Turck, and L T Williams
June 2001, Nucleic acids research,
Copied contents to your clipboard!