Electrophoretic isolation of extrachromosomal DNA from tumor cells. 1995

D R VanDevanter, and J C Tseng, and G Yirdaw
Tumor Institute, Swedish Medical Center, Seattle, Washington, USA.

Gene amplification allows transformed cells to overexpress specific genes and gain a survival advantage. For this reason, cloning and characterization of amplified genes can improve our understanding of the biology of transformed cells. The techniques of in-gel renaturation and chromosome microdissection can enrich for amplified DNA sequences, but both are labor intensive and have other drawbacks. We have developed an alternative strategy of enriching for amplified DNA sequences that involves two-directional agarose gel electrophoresis of extrachromosomal circular DNA. Extrachromosomal circles can be detected with repetitive DNA probes and can be used to produce DNA probes suitable for fluorescence in situ hybridization for location of genomic origin. The ability to enrich for amplified DNA without specialized equipment or transformed cell metaphases should prove useful in the search for new genes which are important in tumor cell progression.

UI MeSH Term Description Entries
D007624 KB Cells This line KB is now known to be a subline of the ubiquitous KERATIN-forming tumor cell line HeLa. It was originally thought to be derived from an epidermal carcinoma of the mouth, but was subsequently found, based on isoenzyme analysis, HeLa marker chromosomes, and DNA fingerprinting, to have been established via contamination by HELA CELLS. The cells are positive for keratin by immunoperoxidase staining. KB cells have been reported to contain human papillomavirus18 (HPV-18) sequences. HeLa-KB Cells,Cell, HeLa-KB,Cell, KB,Cells, HeLa-KB,Cells, KB,HeLa KB Cells,HeLa-KB Cell,KB Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002738 Chloroquine The prototypical antimalarial agent with a mechanism that is not well understood. It has also been used to treat rheumatoid arthritis, systemic lupus erythematosus, and in the systemic therapy of amebic liver abscesses. Aralen,Arechine,Arequin,Chingamin,Chlorochin,Chloroquine Sulfate,Chloroquine Sulphate,Khingamin,Nivaquine,Sulfate, Chloroquine,Sulphate, Chloroquine
D002877 Chromosomes, Human Very long DNA molecules and associated proteins, HISTONES, and non-histone chromosomal proteins (CHROMOSOMAL PROTEINS, NON-HISTONE). Normally 46 chromosomes, including two sex chromosomes are found in the nucleus of human cells. They carry the hereditary information of the individual. Chromosome, Human,Human Chromosome,Human Chromosomes
D004270 DNA, Circular Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992) Circular DNA,Circular DNAs,DNAs, Circular
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015180 Electrophoresis, Gel, Two-Dimensional Electrophoresis in which a second perpendicular electrophoretic transport is performed on the separate components resulting from the first electrophoresis. This technique is usually performed on polyacrylamide gels. Gel Electrophoresis, Two-Dimensional,Polyacrylamide Gel Electrophoresis, Two-Dimensional,2-D Gel Electrophoresis,2-D Polyacrylamide Gel Electrophoresis,2D Gel Electrophoresis,2D PAGE,2D Polyacrylamide Gel Electrophoresis,Electrophoresis, Gel, 2-D,Electrophoresis, Gel, 2D,Electrophoresis, Gel, Two Dimensional,Polyacrylamide Gel Electrophoresis, 2-D,Polyacrylamide Gel Electrophoresis, 2D,Two Dimensional Gel Electrophoresis,2 D Gel Electrophoresis,2 D Polyacrylamide Gel Electrophoresis,Electrophoresis, 2-D Gel,Electrophoresis, 2D Gel,Electrophoresis, Two-Dimensional Gel,Gel Electrophoresis, 2-D,Gel Electrophoresis, 2D,Gel Electrophoresis, Two Dimensional,PAGE, 2D,Polyacrylamide Gel Electrophoresis, 2 D,Polyacrylamide Gel Electrophoresis, Two Dimensional,Two-Dimensional Gel Electrophoresis

Related Publications

D R VanDevanter, and J C Tseng, and G Yirdaw
December 1980, Molecular biology reports,
D R VanDevanter, and J C Tseng, and G Yirdaw
April 2018, Trends in genetics : TIG,
D R VanDevanter, and J C Tseng, and G Yirdaw
January 1979, Methods in enzymology,
D R VanDevanter, and J C Tseng, and G Yirdaw
May 1995, Biulleten' eksperimental'noi biologii i meditsiny,
D R VanDevanter, and J C Tseng, and G Yirdaw
January 1990, Tsitologiia,
D R VanDevanter, and J C Tseng, and G Yirdaw
April 2016, Journal of visualized experiments : JoVE,
D R VanDevanter, and J C Tseng, and G Yirdaw
January 1985, Advances in experimental medicine and biology,
D R VanDevanter, and J C Tseng, and G Yirdaw
January 2006, Methods in molecular medicine,
D R VanDevanter, and J C Tseng, and G Yirdaw
May 1998, BioTechniques,
Copied contents to your clipboard!