The role of alpha 4 beta 1 integrin in cell motility and fibronectin matrix assembly. 1995

C Wu, and A J Fields, and B A Kapteijn, and J A McDonald
Samule C. Johnson Medical Research Center, Mayo Clinic Scottsdale, AZ 85259, USA.

The alpha 4 beta 1 integrin has been suggested to play important roles in embryogenesis and pathogenesis of many diseases which involve both cell adhesion and cell migration. Previous studies using anti-alpha 4 beta 1 antibodies and fibronectin (Fn) fragments have suggested that alpha 4 beta 1 integrins may be involved in cell motility on Fn and vascular cell adhesion molecule-1 (VCAM-1). However, the cells used in these studies also express other Fn integrin receptors including alpha 5 beta 1 integrin, which is known to function in cell motility on Fn. To test whether alpha 4 beta 1 integrins mediate cell motility on Fn and VCAM-1 in the absence of alpha 5 beta 1 integrin, we expressed human alpha 4 integrin in a Chinese hamster ovary (CHO) cell line that is deficient in alpha 5 beta 1 integrin (CHO B2). The parental alpha 5 deficient CHO B2 cells were unable to adhere, spread or migrate on Fn, nor could they assemble a fibrillar Fn matrix. Expression of alpha 4 beta 1 integrin in the CHO B2 cells enabled the cells to adhere, spread and migrate on Fn and on VCAM-1 but not to assemble a fibrillar Fn matrix. The cellular processes mediated by the interaction of alpha 4 beta 1 with Fn or VCAM-1 were inhibited by the CS1 peptide derived from the major alpha 4 beta 1 binding site on Fn. These findings demonstrate that alpha 4 beta 1 integrins not only function as cell adhesion receptors but also as cell motility receptors for Fn and VCAM-1 independent of alpha 5 beta 1. Moreover, they reveal important functional differences between Fn binding integrins. The alpha 4-positive, alpha 5-negative CHO cells described in this report will be useful tools in studying the mechanism of molecular signalling during integrin mediated cellular processes.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015815 Cell Adhesion Molecules Surface ligands, usually glycoproteins, that mediate cell-to-cell adhesion. Their functions include the assembly and interconnection of various vertebrate systems, as well as maintenance of tissue integration, wound healing, morphogenic movements, cellular migrations, and metastasis. Cell Adhesion Molecule,Intercellular Adhesion Molecule,Intercellular Adhesion Molecules,Leukocyte Adhesion Molecule,Leukocyte Adhesion Molecules,Saccharide-Mediated Cell Adhesion Molecules,Saccharide Mediated Cell Adhesion Molecules,Adhesion Molecule, Cell,Adhesion Molecule, Intercellular,Adhesion Molecule, Leukocyte,Adhesion Molecules, Cell,Adhesion Molecules, Intercellular,Adhesion Molecules, Leukocyte,Molecule, Cell Adhesion,Molecule, Intercellular Adhesion,Molecule, Leukocyte Adhesion,Molecules, Cell Adhesion,Molecules, Intercellular Adhesion,Molecules, Leukocyte Adhesion

Related Publications

C Wu, and A J Fields, and B A Kapteijn, and J A McDonald
April 1992, The Journal of cell biology,
C Wu, and A J Fields, and B A Kapteijn, and J A McDonald
May 1990, The Journal of cell biology,
C Wu, and A J Fields, and B A Kapteijn, and J A McDonald
August 1990, The Journal of cell biology,
C Wu, and A J Fields, and B A Kapteijn, and J A McDonald
March 2000, The Journal of cell biology,
C Wu, and A J Fields, and B A Kapteijn, and J A McDonald
November 2011, FEBS letters,
C Wu, and A J Fields, and B A Kapteijn, and J A McDonald
October 2008, Current opinion in cell biology,
C Wu, and A J Fields, and B A Kapteijn, and J A McDonald
October 1996, European journal of biochemistry,
Copied contents to your clipboard!