Regulation of CFTR Cl- channel gating by ADP and ATP analogues. 1995

B D Schultz, and C J Venglarik, and R J Bridges, and R A Frizzell
Department of Physiology and Biophysics, University of Alabama at Birmingham 35294, USA.

The cystic fibrosis gene product (CFTR) is a chloride channel which, once phosphorylated, is regulated by nucleotide phosphates (Anderson, M. P., and M. J. Welsh. 1992. Science. 257:1701-1704; Venglarik, C. J., B. D. Schultz, R. A. Frizzell, and R. J. Bridges. 1994. Journal of General Physiology. 104:123-146). Nucleotide triphosphates initiate channel activity, while nucleotide diphosphates and nonhydrolyzable ATP analogues do not. To further characterize the role of these compounds on CFTR channel activity we examined their effects on chloride channel currents in excised inside-out membrane patches from CFTR transfected mouse L cells. ADP competitively inhibited ATP-dependent CFTR channel gating with a Ki of 16 +/- 9 microM. AMP neither initiated CFTR channel gating nor inhibited ATP-dependent CFTR channel gating. Similarly, ATP analogues with substitutions in the phosphate chain, including AMPCPP, AMPPCP, AMPPNP, and ATP gamma S failed to support CFTR channel activity when present at the cytoplasmic face of the membrane and none of these analogues, when present at three to 10-fold excess of ATP, detectably altered ATP-dependent CFTR channel gating. These data suggest that none of these ATP analogues interact with the ATP regulatory site of CFTR which we previously characterized and, therefore, no inference regarding a requirement for ATP hydrolysis in CFTR channel gating can be made from their failure to support channel activity. Furthermore, the data indicate that this nucleotide regulatory site is exquisitely sensitive to alterations in the phosphate chain of the nucleotide; only a nonsubstituted nucleotide di- or triphosphate interacts with this regulatory site. Alternative recording conditions, such as the presence of kinase and a reduction in temperature to 25 degrees C, result in a previously uncharacterized kinetic state of CFTR which may exhibit distinctly different nucleotide dependencies.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings

Related Publications

B D Schultz, and C J Venglarik, and R J Bridges, and R A Frizzell
July 2000, Proceedings of the National Academy of Sciences of the United States of America,
B D Schultz, and C J Venglarik, and R J Bridges, and R A Frizzell
March 1994, Neuron,
B D Schultz, and C J Venglarik, and R J Bridges, and R A Frizzell
May 2009, The Journal of physiology,
B D Schultz, and C J Venglarik, and R J Bridges, and R A Frizzell
December 2005, The Journal of physiology,
B D Schultz, and C J Venglarik, and R J Bridges, and R A Frizzell
January 1994, The Japanese journal of physiology,
B D Schultz, and C J Venglarik, and R J Bridges, and R A Frizzell
November 1994, Trends in biochemical sciences,
B D Schultz, and C J Venglarik, and R J Bridges, and R A Frizzell
February 1998, The EMBO journal,
B D Schultz, and C J Venglarik, and R J Bridges, and R A Frizzell
February 2010, Proceedings of the National Academy of Sciences of the United States of America,
B D Schultz, and C J Venglarik, and R J Bridges, and R A Frizzell
July 1998, FEBS letters,
B D Schultz, and C J Venglarik, and R J Bridges, and R A Frizzell
August 1998, Acta physiologica Scandinavica. Supplementum,
Copied contents to your clipboard!