tRNAs as primer of reverse transcriptases. 1995

R Marquet, and C Isel, and C Ehresmann, and B Ehresmann
UPR no 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.

Genetic elements coding for proteins that present amino acid identity with the conserved motifs of retroviral reverse transcriptases constitute the retroid family. With the exception of reverse transcriptases encoded by mitochondrial plasmids of Neurospora, all reverse transcriptases have an absolute requirement for a primer to initiate DNA synthesis. In retroviruses, plant pararetroviruses, and retrotransposons (transposons containing long terminal repeats), DNA synthesis is primed by specific tRNAs. All these retroelements contain a primer binding site presenting a Watson-Crick complementarity with the primer tRNA. The tRNAs most widely used as primers are tRNA(Trp), tRNA(Pro), tRNA(1,2Lys), tRNA(3Lys), tRNA(iMet). Other tRNAs such as tRNA(Gln), tRNA(Leu), tRNA(Ser), tRNA(Asn) and tRNA(Arg) are also occasionally used as primers. In the retroviruses and plant pararetroviruses, the primer binding site is complementary to the 3' end of the primer tRNA. In the case of retrotransposons, the primer binding site is either complementary to the 3' end or to an internal region of the primer tRNA. Additional interactions taking place between the primer tRNA and the retro-RNA outside of the primer binding site have been evidenced in the case of Rous sarcoma virus, human immunodeficiency virus type I, and yeast retrotransposon Ty1. A selective encapsidation of the primer tRNA, probably promoted by interactions with reverse transcriptase, occurs during the formation of virus or virus-like particles. Annealing of the primer tRNA to the primer binding site appears to be mediated by reverse transcriptase and/or the nucleocapsid protein. Modified nucleosides of the primer tRNA have been shown to be important for replication of the primer binding site, encapsidation of the primer (in the case of Rous sarcoma virus), and interaction with the genomic RNA (in the case of human immunodeficiency virus type I).

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D010942 Plant Viruses Viruses parasitic on plants. Phytophagineae,Plant Virus,Virus, Plant,Viruses, Plant
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004253 DNA Nucleotidylexotransferase A non-template-directed DNA polymerase normally found in vertebrate thymus and bone marrow. It catalyzes the elongation of oligo- or polydeoxynucleotide chains and is widely used as a tool in the differential diagnosis of acute leukemias in man. EC 2.7.7.31. Terminal Addition Enzyme,Terminal Deoxyribonucleotidyltransferase,Deoxynucleotidyl Transferase,Deoxynucleotidyltransferase,Desoxynucleotidyl Transferase,Desoxynucleotidyltransferase,Tdt Antigen,Terminal Deoxynucleotidyl Transferase,Terminal Deoxyribonucleotidyl Transferase,Addition Enzyme, Terminal,Antigen, Tdt,Deoxynucleotidyl Transferase, Terminal,Deoxyribonucleotidyl Transferase, Terminal,Deoxyribonucleotidyltransferase, Terminal,Enzyme, Terminal Addition,Nucleotidylexotransferase, DNA,Transferase, Deoxynucleotidyl,Transferase, Desoxynucleotidyl,Transferase, Terminal Deoxynucleotidyl,Transferase, Terminal Deoxyribonucleotidyl
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012190 Retroviridae Family of RNA viruses that infects birds and mammals and encodes the enzyme reverse transcriptase. The family contains seven genera: DELTARETROVIRUS; LENTIVIRUS; RETROVIRUSES TYPE B, MAMMALIAN; ALPHARETROVIRUS; GAMMARETROVIRUS; RETROVIRUSES TYPE D; and SPUMAVIRUS. A key feature of retrovirus biology is the synthesis of a DNA copy of the genome which is integrated into cellular DNA. After integration it is sometimes not expressed but maintained in a latent state (PROVIRUSES). Leukemogenic Viruses,Leukoviruses,Oncornaviruses,Oncovirinae,Oncoviruses,Oncoviruses, Type C,RNA Tumor Viruses,Retroviruses,Type C Oncoviruses,C Oncovirus, Type,C Oncoviruses, Type,Leukemogenic Virus,Leukovirus,Oncornavirus,Oncovirus,Oncovirus, Type C,RNA Tumor Virus,Retrovirus,Tumor Virus, RNA,Tumor Viruses, RNA,Type C Oncovirus,Virus, Leukemogenic,Virus, RNA Tumor,Viruses, Leukemogenic,Viruses, RNA Tumor
D012194 RNA-Directed DNA Polymerase An enzyme that synthesizes DNA on an RNA template. It is encoded by the pol gene of retroviruses and by certain retrovirus-like elements. EC 2.7.7.49. DNA Polymerase, RNA-Directed,RNA-Dependent DNA Polymerase,Reverse Transcriptase,RNA Transcriptase,Revertase,DNA Polymerase, RNA Directed,DNA Polymerase, RNA-Dependent,RNA Dependent DNA Polymerase,RNA Directed DNA Polymerase
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA

Related Publications

R Marquet, and C Isel, and C Ehresmann, and B Ehresmann
November 1997, Journal of virology,
R Marquet, and C Isel, and C Ehresmann, and B Ehresmann
September 2001, Bioorganic & medicinal chemistry letters,
R Marquet, and C Isel, and C Ehresmann, and B Ehresmann
October 2000, The Journal of biological chemistry,
R Marquet, and C Isel, and C Ehresmann, and B Ehresmann
October 1995, The Journal of biological chemistry,
R Marquet, and C Isel, and C Ehresmann, and B Ehresmann
April 2017, Virus research,
R Marquet, and C Isel, and C Ehresmann, and B Ehresmann
August 2010, Cellular and molecular life sciences : CMLS,
R Marquet, and C Isel, and C Ehresmann, and B Ehresmann
September 1972, Science (New York, N.Y.),
R Marquet, and C Isel, and C Ehresmann, and B Ehresmann
December 2004, Eukaryotic cell,
R Marquet, and C Isel, and C Ehresmann, and B Ehresmann
January 2001, BioTechniques,
R Marquet, and C Isel, and C Ehresmann, and B Ehresmann
March 2001, Journal of molecular biology,
Copied contents to your clipboard!