Myelinogenic potential of an immortalized oligodendrocyte cell line. 1995

S L Newman, and A A Weikle, and T J Neuberger, and J W Bigbee
Department of Biochemistry and Molecular Biophysics, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA.

The myelinogenic potential of an oligodendrocyte cell line (N20.1) immortalized by transformation with a temperature-sensitive retrovirus (Verity et al., J Neurochem 60:577-587, 1993) has been evaluated in a co-culture system utilizing dorsal root ganglion neurons. When N20.1 cells were placed in co-culture with dorsal root ganglion neurons at 39 degrees C, the temperature at which TAg expression is decreased relative to that in cells maintained at 34 degrees C, there was a dramatic decrease in the N20.1 proliferation rate compared to cells maintained in the absence of neurons at either temperature. This decrease in proliferation was observed within 3 days of co-culture and appeared to precede a further decrease in TAg expression that occurred with time in response to the neurons. In co-cultures the immunoreactivity of N20.1 cells for galactocerebroside increased with time, and the cells appeared to establish contact with neurites and initiate formation of membranous sheets. When the duration of co-culture was extended to 52 days, myelin-like figures were noted by electron microscopy. Thus, the extent of N20.1 differentiation is dependent on the presence of neurons and the duration of co-culture. This culture system represents a potentially powerful tool for the study of neuronal-glial interactions influencing myelinogenesis and remyelination.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D011510 Proteolipids Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004676 Myelin Basic Protein An abundant cytosolic protein that plays a critical role in the structure of multilamellar myelin. Myelin basic protein binds to the cytosolic sides of myelin cell membranes and causes a tight adhesion between opposing cell membranes. Golli-MBP1 Protein,Golli-MBP2 Protein,HOG5 Protein,HOG7 Protein,MBP1 Protein,MBP2 Protein,MBP3 Protein,MBP4 Protein,Myelin Basic Protein, 17.2 kDa Isoform,Myelin Basic Protein, 18.5 kDa Isoform,Myelin Basic Protein, 20.2 kDa Isoform,Myelin Basic Protein, 21.5 kDa Isoform,Myelin Basic Protein, Isoform 1,Myelin Basic Protein, Isoform 2,Myelin Basic Protein, Isoform 3,Myelin Basic Protein, Isoform 4,Myelin Basic Protein, Isoform 5,Myelin Basic Protein, Isoform 6,Myelin Basic Protein, Isoform 7,Golli MBP1 Protein,Golli MBP2 Protein
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S L Newman, and A A Weikle, and T J Neuberger, and J W Bigbee
June 2001, Glia,
S L Newman, and A A Weikle, and T J Neuberger, and J W Bigbee
June 1993, Journal of neuroscience research,
S L Newman, and A A Weikle, and T J Neuberger, and J W Bigbee
March 1997, In vitro cellular & developmental biology. Animal,
S L Newman, and A A Weikle, and T J Neuberger, and J W Bigbee
September 2004, Cancer letters,
S L Newman, and A A Weikle, and T J Neuberger, and J W Bigbee
September 2017, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S L Newman, and A A Weikle, and T J Neuberger, and J W Bigbee
October 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
S L Newman, and A A Weikle, and T J Neuberger, and J W Bigbee
February 2000, The Journal of urology,
S L Newman, and A A Weikle, and T J Neuberger, and J W Bigbee
February 2000, Molecular human reproduction,
S L Newman, and A A Weikle, and T J Neuberger, and J W Bigbee
November 2019, The Laryngoscope,
S L Newman, and A A Weikle, and T J Neuberger, and J W Bigbee
April 2021, Journal of cellular and molecular medicine,
Copied contents to your clipboard!