Cytochemical characteristics of cat spinal neurons activated during fictive locomotion. 1995

P A Carr, and A Huang, and B R Noga, and L M Jordan
Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.

Using standard immunohistochemical and histochemical techniques, we have examined the neurochemical characteristics of a subpopulation of locomotor-related neurons as labeled by the activity-dependent marker c-fos. Results were compared to those obtained from a small sample of intracellularly labeled locomotor-related neurons. In the paralyzed, decerebrate cat, fictive locomotion was evoked by electrical stimulation of the mesencephalic locomotor region. Most c-fos-immunoreactive neurons were distributed in medial lamina VI and VII and in lamina VIII and X. Double labeling of c-fos with various cytochemical markers revealed that about one-third of the c-fos-immunoreactive neurons were choline acetyltransferase immunoreactive, about one-third were glutamate immunoreactive, and about one-third were aspartate immunoreactive. In addition, approximately 15% of the c-fos-labeled neurons contained NADPH-diaphrorase reaction product, while almost 40% appeared to receive close contacts from calcitonin gene-related peptide-immunoreactive fibers and boutons. Choline acetyltransferase- or aspartate immunoreactivity was observed in some intracellularly labeled neurons. These findings have implications regarding the putative neurotransmitters utilized by subpopulations of locomotor-related neurons in the cat spinal cord.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D008297 Male Males
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D005260 Female Females
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P A Carr, and A Huang, and B R Noga, and L M Jordan
December 2020, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P A Carr, and A Huang, and B R Noga, and L M Jordan
June 1993, Journal of neurophysiology,
P A Carr, and A Huang, and B R Noga, and L M Jordan
November 2005, The Journal of physiology,
P A Carr, and A Huang, and B R Noga, and L M Jordan
September 2005, Journal of neurophysiology,
P A Carr, and A Huang, and B R Noga, and L M Jordan
January 1990, Experimental brain research,
P A Carr, and A Huang, and B R Noga, and L M Jordan
January 1985, Neirofiziologiia = Neurophysiology,
P A Carr, and A Huang, and B R Noga, and L M Jordan
September 1996, Neuroscience research,
P A Carr, and A Huang, and B R Noga, and L M Jordan
April 1997, Brain research,
P A Carr, and A Huang, and B R Noga, and L M Jordan
August 2001, Journal of neurophysiology,
P A Carr, and A Huang, and B R Noga, and L M Jordan
January 1992, Experimental brain research,
Copied contents to your clipboard!