Interaction between lck and syk family tyrosine kinases in Fc gamma receptor-initiated activation of natural killer cells. 1995

A T Ting, and C J Dick, and R A Schoon, and L M Karnitz, and R T Abraham, and P J Leibson
Department of Immunology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.

Ligation of the Fc gamma R on natural killer (NK) cells results in the tyrosine phosphorylation of multiple substrates critical for intracellular signaling and activation of NK cell effector functions. However, it remains unclear which nonreceptor protein-tyrosine kinases (PTK) participate in this process. In this report we demonstrate that Fc gamma R ligation induced the tyrosine phosphorylation and increased the catalytic activities of both syk family PTKs, ZAP-70, and syk. The phosphorylation of ZAP-70 and syk was enhanced markedly by overexpression of wild-type lck but not by a kinase-inactive mutant, suggesting that early Fc gamma R-initiated activation of lck results in the subsequent regulation of syk family PTKs. The regulatory interplay between src and syk family PTKs was emphasized further by the observation that lck overexpression enhanced the association of ZAP-70 with the zeta chain of the Fc gamma R complex. Additional analyses indicated that lck induced the subsequent tyrosine phosphorylation of phospholipase C (PLC)-gamma 2. Interestingly, the regulatory effects of lck on ZAP-70, syk, and PLC-gamma 2 could not be replaced by overexpression of either fyn or src, demonstrating a selective role for lck in effectively coupling Fc gamma R stimulation to critical downstream signaling events. Taken together, our results suggest not only that Fc gamma R stimulation on NK cells is coupled to the intracellular activation of both ZAP-70 and syk, but that the src family member, lck, can selectively regulate this tyrosine kinase cascade.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004792 Enzyme Precursors Physiologically inactive substances that can be converted to active enzymes. Enzyme Precursor,Proenzyme,Proenzymes,Zymogen,Zymogens,Precursor, Enzyme,Precursors, Enzyme

Related Publications

A T Ting, and C J Dick, and R A Schoon, and L M Karnitz, and R T Abraham, and P J Leibson
December 1993, Journal of immunology (Baltimore, Md. : 1950),
A T Ting, and C J Dick, and R A Schoon, and L M Karnitz, and R T Abraham, and P J Leibson
January 1997, Blood,
A T Ting, and C J Dick, and R A Schoon, and L M Karnitz, and R T Abraham, and P J Leibson
March 1997, The Journal of biological chemistry,
A T Ting, and C J Dick, and R A Schoon, and L M Karnitz, and R T Abraham, and P J Leibson
October 1995, Cellular immunology,
A T Ting, and C J Dick, and R A Schoon, and L M Karnitz, and R T Abraham, and P J Leibson
December 1992, The Journal of experimental medicine,
A T Ting, and C J Dick, and R A Schoon, and L M Karnitz, and R T Abraham, and P J Leibson
August 1996, Journal of immunology (Baltimore, Md. : 1950),
A T Ting, and C J Dick, and R A Schoon, and L M Karnitz, and R T Abraham, and P J Leibson
February 1992, European journal of immunology,
A T Ting, and C J Dick, and R A Schoon, and L M Karnitz, and R T Abraham, and P J Leibson
February 1989, Journal of immunology (Baltimore, Md. : 1950),
A T Ting, and C J Dick, and R A Schoon, and L M Karnitz, and R T Abraham, and P J Leibson
October 1989, Journal of immunology (Baltimore, Md. : 1950),
A T Ting, and C J Dick, and R A Schoon, and L M Karnitz, and R T Abraham, and P J Leibson
April 1990, Immunitat und Infektion,
Copied contents to your clipboard!