Cerebellar influence on olivary excitability in the cat. 1995

T J Ruigrok, and J Voogd
Department of Anatomy, Erasmus University Rotterdam, Netherlands.

This study examines the influence of the cerebellum on the excitability of inferior olivary neurons in the cat. Two major pathways from the cerebellar nuclei to the inferior olive have been investigated by electrophysiological and anatomical techniques. The first, excitatory pathway connects the cerebellar nuclei through nuclei at the mesodiencephalic junction with the inferior olive. The second is the direct, GABAergic, nucleo-olivary pathway. Intra- as well as extracellular recordings obtained in the rostral part of the medial accessory and principal olives revealed that electrical stimulation with a short burst of three pulses delivered at the mesodiencephalic junction results in short-latency activation (4-8 ms) of most olivary neurons. More than half of the units showed, in addition to the short-latency activation, a consistent response with a much longer latency (approximately 180 ms). Many units (66%) that responded to mesodiencephalic stimulation could also be activated by superior cerebellar peduncle stimulation with a similar stimulation paradigm (latency 9-15 ms). However, in such cases consistent long-latency responses were only rarely recorded (7%). To distinguish between the effect of the two pathways, both of which are activated by superior cerebellar peduncle stimulation, an electrolytic lesion of the nucleo-olivary fibres was made in the brainstem in six experiments. The effect of this lesion was verified in three cases by retrograde horseradish peroxidase tracing from the rostral inferior olive at the end of the experiment. This time only extracellular recordings were made. Stimulation of the mesodiencephalic junction still resulted in easily activated olivary units which showed an increased probability of firing a long-latency action potential. Stimulation of the superior cerebellar peduncle now resulted in a 50% decrease in probability of activating olivary units in the short-latency range. However, a five-fold increase in the chance of triggering action potentials in the long-latency interval was noted, implying that many units reacted only with a long-latency action potential. The results obtained with our experimental paradigm appear enigmatic since it is well established that the nucleo-olivary pathway is GABAergic and thus, by convention, should be inhibitory to the olivary neurons. However, it is possible to explain these results in terms of dynamic coupling of olivary neurons. This concept ascribes an important role to the nucleo-olivary pathway in regulating the degree of electrotonic coupling between olivary neurons (probably by a shunting mechanism) and as such may be an important instrument in the regulation of synchronous and rhythmic olivary discharges.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009847 Olivary Nucleus A brainstem nuclear complex. in the hindbrain, also referred to as the olivary body. The olivary nuclear complex is a part of the MEDULLA OBLONGATA and the PONTINE TEGMENTUM. It is involved with motor control and is a major source of sensory input to the CEREBELLUM. Basal Nucleus, Olivary,Nucleus Basalis, Olivary,Olivary Body,Olivary Complex,Olivary Nuclei,Complex, Olivary,Nucleus, Olivary,Nucleus, Olivary Basal,Olivary Basal Nucleus,Olivary Bodies
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002529 Cerebellar Nuclei Four clusters of neurons located deep within the WHITE MATTER of the CEREBELLUM, which are the nucleus dentatus, nucleus emboliformis, nucleus globosus, and nucleus fastigii. Dentate Nucleus,Nucleus Dentatus,Nucleus Emboliformis,Nucleus Fastigii,Nucleus Globosus,Amiculum of the Dentate Nucleus,Anterior Interposed Nucleus,Anterior Interpositus Nucleus,Central Nuclei,Deep Cerebellar Nuclei,Dentate Cerebellar Nucleus,Fastigial Cerebellar Nucleus,Fastigial Nucleus,Intracerebellar Nuclei,Lateral Cerebellar Nucleus,Medial Cerebellar Nucleus,Central Nucleus,Cerebellar Nuclei, Deep,Cerebellar Nucleus,Cerebellar Nucleus, Deep,Cerebellar Nucleus, Dentate,Cerebellar Nucleus, Fastigial,Cerebellar Nucleus, Lateral,Cerebellar Nucleus, Medial,Deep Cerebellar Nucleus,Emboliformis, Nucleus,Fastigii, Nucleus,Globosus, Nucleus,Interposed Nucleus, Anterior,Interpositus Nucleus, Anterior,Intracerebellar Nucleus,Nuclei, Central,Nuclei, Cerebellar,Nuclei, Deep Cerebellar,Nuclei, Intracerebellar,Nucleus Fastigius,Nucleus, Anterior Interposed,Nucleus, Anterior Interpositus,Nucleus, Central,Nucleus, Cerebellar,Nucleus, Deep Cerebellar,Nucleus, Dentate,Nucleus, Dentate Cerebellar,Nucleus, Fastigial,Nucleus, Fastigial Cerebellar,Nucleus, Intracerebellar,Nucleus, Lateral Cerebellar,Nucleus, Medial Cerebellar
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D004027 Diencephalon The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived. Interbrain,Interbrains

Related Publications

T J Ruigrok, and J Voogd
January 1981, Anatomy and embryology,
T J Ruigrok, and J Voogd
June 1970, Experimental brain research,
T J Ruigrok, and J Voogd
December 1973, The Journal of physiology,
T J Ruigrok, and J Voogd
January 1985, Experimental brain research,
T J Ruigrok, and J Voogd
January 1997, Progress in brain research,
T J Ruigrok, and J Voogd
March 1954, Bollettino della Societa italiana di biologia sperimentale,
T J Ruigrok, and J Voogd
April 1981, Electroencephalography and clinical neurophysiology,
T J Ruigrok, and J Voogd
March 2020, Cerebral cortex (New York, N.Y. : 1991),
Copied contents to your clipboard!