Transforming growth factor-beta isoform expression in insulin-like growth factor stimulated myogenesis. 1995

W J Bosche, and D Z Ewton, and J R Florini
Biology Department, Syracuse University, New York 13244, USA.

Transforming growth factor betas (TGF-beta s) are the defining members of a super-family of small proteins that are involved in the regulation of development and morphogenesis in a wide array of systems. Previous studies have demonstrated that TGF-beta s both inhibit and, under specialized conditions, induce the differentiation of myoblasts. TGF-beta have been shown to be secreted by mouse C2C12 myoblast cultures undergoing differentiation. Insulin-like growth factors (IGFs) have also been shown to be secreted by myoblasts and to induce myogenesis. This study characterizes the effect of IGF treatment on the expression and secretion of TGF-beta s in the IGF-sensitive L6A1 myoblast line. IGF downregulated the expression of TGF-beta 3 in a concentration-dependent manner at 24 and 48 hours; TGF-beta 1 was not sensitive to IGF treatment at 24 hours but was downregulated by IGFs at 48 hours. This downregulation was mediated by the type 1 IGF receptor and modulated by IGF binding proteins secreted by the myoblasts. Some reexpression of TGF-beta 1 and TGF-beta 3 mRNAs was observed after extensive morphological differentiation had occurred. These results support the hypothesis that IGFs act through the IGF type I receptor as part of a concerted mechanism to modulate expression of the TGF-beta genes, as part of a coordinated set of changes associated with terminal myogenic differentiation.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013002 Somatomedins Insulin-like polypeptides made by the liver and some fibroblasts and released into the blood when stimulated by SOMATOTROPIN. They cause sulfate incorporation into collagen, RNA, and DNA synthesis, which are prerequisites to cell division and growth of the organism. Sulfation Factor,Somatomedin,Factor, Sulfation

Related Publications

W J Bosche, and D Z Ewton, and J R Florini
February 2003, Development, growth & differentiation,
W J Bosche, and D Z Ewton, and J R Florini
December 1997, European journal of cancer (Oxford, England : 1990),
W J Bosche, and D Z Ewton, and J R Florini
November 2003, Archives of gynecology and obstetrics,
W J Bosche, and D Z Ewton, and J R Florini
February 2000, Molecular human reproduction,
W J Bosche, and D Z Ewton, and J R Florini
April 1998, Biochemical and biophysical research communications,
W J Bosche, and D Z Ewton, and J R Florini
May 2002, Virchows Archiv : an international journal of pathology,
W J Bosche, and D Z Ewton, and J R Florini
September 2009, Biochemical and biophysical research communications,
W J Bosche, and D Z Ewton, and J R Florini
May 1995, Calcified tissue international,
W J Bosche, and D Z Ewton, and J R Florini
October 2001, Investigative ophthalmology & visual science,
Copied contents to your clipboard!