Alpha v beta 1 is a receptor for vitronectin and fibrinogen, and acts with alpha 5 beta 1 to mediate spreading on fibronectin. 1995

J F Marshall, and D C Rutherford, and A C McCartney, and F Mitjans, and S L Goodman, and I R Hart
Richard Dimbleby Department of Cancer Research/ICRF Laboratory, St Thomas' Hospital, London, UK.

We have shown previously that VUP was the only line out of ten human melanoma lines that failed to express the vitronectin receptor alpha v beta 3, but instead expressed alpha v beta 1. Levels of alpha v beta 1 expression were low on parental VUP cells so that iterative sorting by FACS, using an anti-alpha v antibody (13C2), was utilised to derive sublines with 8- to 10-fold higher amounts of cell surface alpha v beta 1. There was little difference between low (V-) and high (V+) alpha v beta 1-expressing sublines with regard to adherence to collagen type I, collagen type IV or laminin substrata. However, adherence to vitronectin and fibrinogen correlated closely with alpha v beta 1 expression (35-42% adhesion for V(+) lines versus 6-8% adhesion for V- lines on vitronectin, for example). Utilising a high alpha v beta 1-expressing subline (V + B2) we have shown that binding to vitronectin and fibrinogen was inhibited specifically by function-blocking antibodies to alpha v (17E6 and 14D9) and beta 1 (A11B2). V(+) sublines spread more compared with V(-) sublines on both vitronectin and fibronectin. However, neither alpha 5- nor alpha v-blocking antibodies had any effect on attachment or spreading of V + B2 on fibronectin whereas the combination of alpha 5 (PID6)- and alpha v(17E6)-blocking antibodies abrogated binding to fibronectin almost completely. This is the first report of an alpha v beta 1 integrin able to recognize vitronectin and fibrinogen, and also cooperate with alpha 5 beta 1 to mediate attachment to and spreading on fibronectin.

UI MeSH Term Description Entries
D008545 Melanoma A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445) Malignant Melanoma,Malignant Melanomas,Melanoma, Malignant,Melanomas,Melanomas, Malignant
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D010980 Platelet Membrane Glycoproteins Surface glycoproteins on platelets which have a key role in hemostasis and thrombosis such as platelet adhesion and aggregation. Many of these are receptors. PM-GP,Platelet Glycoprotein,Platelet Membrane Glycoprotein,PM-GPs,Platelet Glycoproteins,Glycoprotein, Platelet,Glycoprotein, Platelet Membrane,Glycoproteins, Platelet,Glycoproteins, Platelet Membrane,Membrane Glycoprotein, Platelet,Membrane Glycoproteins, Platelet,PM GP
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

J F Marshall, and D C Rutherford, and A C McCartney, and F Mitjans, and S L Goodman, and I R Hart
December 1990, The Journal of cell biology,
J F Marshall, and D C Rutherford, and A C McCartney, and F Mitjans, and S L Goodman, and I R Hart
March 1994, Histopathology,
J F Marshall, and D C Rutherford, and A C McCartney, and F Mitjans, and S L Goodman, and I R Hart
December 1996, Experimental dermatology,
J F Marshall, and D C Rutherford, and A C McCartney, and F Mitjans, and S L Goodman, and I R Hart
January 2003, The Journal of biological chemistry,
J F Marshall, and D C Rutherford, and A C McCartney, and F Mitjans, and S L Goodman, and I R Hart
April 1994, Cancer research,
J F Marshall, and D C Rutherford, and A C McCartney, and F Mitjans, and S L Goodman, and I R Hart
June 1993, The Journal of biological chemistry,
J F Marshall, and D C Rutherford, and A C McCartney, and F Mitjans, and S L Goodman, and I R Hart
September 1995, The Journal of biological chemistry,
J F Marshall, and D C Rutherford, and A C McCartney, and F Mitjans, and S L Goodman, and I R Hart
October 1994, The Journal of biological chemistry,
J F Marshall, and D C Rutherford, and A C McCartney, and F Mitjans, and S L Goodman, and I R Hart
August 1995, The Journal of biological chemistry,
J F Marshall, and D C Rutherford, and A C McCartney, and F Mitjans, and S L Goodman, and I R Hart
May 1997, The international journal of biochemistry & cell biology,
Copied contents to your clipboard!