Differential effects of TGF-beta 1 on normal and leukemic human hematopoietic cell proliferation. 1995

I Murohashi, and K Endho, and S Nishida, and S Yoshida, and I Jinnai, and M Bessho, and K Hirashima
First Department of Internal Medicine, Saitama Medical School, Japan.

We evaluated the effects of transforming growth factor-beta 1 (TGF-beta 1) on the growth of hematopoietic progenitors in normal donors and in patients with hematologic malignancies now designed as clonal disorders of multipotential stem cells. TGF-beta 1 at 80 pM exhibited differential effects on the normal hematopoietic progenitors when cells were stimulated with different growth factors, such as G-CSF, GM-CSF, interleukin-3 (IL-3), or stem cell factor (SCF). The suppressive effect by TGF-beta 1 was increased for growth with GM-CSF, IL-3, and SCF, and growth with G-CSF was unaffected in hematologic malignancies, TGF-beta 1 suppression for growth with G-CSF was increased for essential thrombocythemia (ET) and polycythemia vera; chronic myelogenous leukemia (CML) in chronic phase; CML in accelerated phase; CML in myeloid crisis; myelodysplastic syndrome (MDS) in refractory anemia; MDS in refractory anemia with an excess of blasts; and acute myeloblastic leukemia (AML). In CML-myeloid crisis and AML, TGF-beta 1 almost completely abolished the growth, with some patient-to-patient variation. The mean ED50s for the growth of leukemic blast progenitors were 1.6, 1.2, 0.7, and 0.2 pM in the presence of G-CSF, GM-CSF, IL-3, and SCF, respectively, c-myc and c-myb antisense oligonucleotides significantly suppressed the growth of leukemic blast progenitors, but not that of clonogenic cells from normal donors and patients with ET. We also demonstrated that TGF-beta 1 inhibits mRNA expression by AML blasts for c-myc and/or c-myb. When the data are taken together, growth suppression by TGF-beta 1 appears to increase with the progression of clonal evolution in hematologic malignancies.

UI MeSH Term Description Entries
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D001752 Blast Crisis An advanced phase of chronic myelogenous leukemia, characterized by a rapid increase in the proportion of immature white blood cells (blasts) in the blood and bone marrow to greater than 30%. Blast Phase,Blast Crises,Blast Phases,Crises, Blast,Crisis, Blast,Phase, Blast,Phases, Blast
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M

Related Publications

I Murohashi, and K Endho, and S Nishida, and S Yoshida, and I Jinnai, and M Bessho, and K Hirashima
June 1991, Haematologica,
I Murohashi, and K Endho, and S Nishida, and S Yoshida, and I Jinnai, and M Bessho, and K Hirashima
February 1989, Leukemia,
I Murohashi, and K Endho, and S Nishida, and S Yoshida, and I Jinnai, and M Bessho, and K Hirashima
May 1998, Nihon Jinzo Gakkai shi,
I Murohashi, and K Endho, and S Nishida, and S Yoshida, and I Jinnai, and M Bessho, and K Hirashima
October 1997, The Prostate,
I Murohashi, and K Endho, and S Nishida, and S Yoshida, and I Jinnai, and M Bessho, and K Hirashima
July 1978, Blood,
I Murohashi, and K Endho, and S Nishida, and S Yoshida, and I Jinnai, and M Bessho, and K Hirashima
March 1995, Hepatology (Baltimore, Md.),
I Murohashi, and K Endho, and S Nishida, and S Yoshida, and I Jinnai, and M Bessho, and K Hirashima
January 1998, American journal of rhinology,
I Murohashi, and K Endho, and S Nishida, and S Yoshida, and I Jinnai, and M Bessho, and K Hirashima
January 1997, American journal of respiratory cell and molecular biology,
I Murohashi, and K Endho, and S Nishida, and S Yoshida, and I Jinnai, and M Bessho, and K Hirashima
August 1994, Journal of dermatological science,
I Murohashi, and K Endho, and S Nishida, and S Yoshida, and I Jinnai, and M Bessho, and K Hirashima
January 1989, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!