Supplemental L-arginine during cardioplegic arrest and reperfusion avoids regional postischemic injury. 1995

H Sato, and Z Q Zhao, and D S McGee, and M W Williams, and J W Hammon, and J Vinten-Johansen
Department of Cardiothoracic Surgery, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, N.C. 27157-1096, USA.

Unenhanced hypothermic cardioplegia does not prevent postischemic endothelial and contractile dysfunction in hearts subjected to antecedent regional or global ischemia. This study tested the hypothesis that supplementing blood cardioplegic solution and reperfusion with the nitric oxide precursor L-arginine would preserve endothelial function, reduce infarct size, and reverse postcardioplegia regional contractile dysfunction by the L-arginine-nitric oxide pathway. In 23 anesthetized dogs, the left anterior descending coronary artery was ligated for 90 minutes, after which total bypass was established for surgical "revascularization." In 10 dogs, unsupplemented multidose hypothermic blood cardioplegic solution was administered for a total of 60 minutes of cardioplegic arrest. In eight dogs, L-arginine was given intravenously (4 mg/kg per minute) and in blood cardioplegic solution (10 mmol) during arrest. In five dogs, the nitric oxide synthesis blocker N omega-nitro-L-arginine (1 mmol) was used to block the L-arginine-nitric oxide pathway during cardioplegia and reperfusion. Infarct size (triphenyltetrazolium chloride) as percent of the area at risk was significantly reduced by L-arginine compared with blood cardioplegic solution (28.2% +/- 4.1% versus 40.5% +/- 3.5%) and was reversed by N omega-nitro-L-arginine to 68.9% +/- 3.0% (p < 0.05). Postischemic regional segmental work in millimeters of mercury per millimeter (sonomicrometry) was significantly better with L-arginine (92 +/- 15) versus blood cardioplegic solution (28 +/- 3) and N omega-nitro-L-arginine (26 +/- 6). Segmental diastolic stiffness was significantly lower with L-arginine (0.46 +/- 0.06) compared with blood cardioplegic solution (1.10 +/- 0.11) and was significantly greater with N omega-nitro-L-arginine (2.70 +/- 0.43). In ischemic-reperfused left anterior descending coronary arterial vascular rings, maximum relaxation responses to acetylcholine, the stimulator of endothelial nitric oxide, was depressed in the blood cardioplegic solution group (77% +/- 4%) and was significantly reversed by L-arginine (92% +/- 3%). Smooth muscle function was unaffected in all groups. We conclude that cardioplegic solution supplemented with L-arginine reduces infarct size, preserves postischemic systolic and diastolic regional function, and prevents arterial endothelial dysfunction via the L-arginine-nitric oxide pathway.

UI MeSH Term Description Entries
D007036 Hypothermia, Induced Abnormally low BODY TEMPERATURE that is intentionally induced in warm-blooded animals by artificial means. In humans, mild or moderate hypothermia has been used to reduce tissue damages, particularly after cardiac or spinal cord injuries and during subsequent surgeries. Induced Hypothermia,Mild Hypothermia, Induced,Moderate Hypothermia, Induced,Targeted Temperature Management,Therapeutic Hypothermia,Hypothermia, Therapeutic,Induced Mild Hypothermia,Induced Mild Hypothermias,Induced Moderate Hypothermia,Induced Moderate Hypothermias,Mild Hypothermias, Induced,Moderate Hypothermias, Induced,Targeted Temperature Managements
D009195 Peroxidase A hemeprotein from leukocytes. Deficiency of this enzyme leads to a hereditary disorder coupled with disseminated moniliasis. It catalyzes the conversion of a donor and peroxide to an oxidized donor and water. EC 1.11.1.7. Myeloperoxidase,Hemi-Myeloperoxidase,Hemi Myeloperoxidase
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009203 Myocardial Infarction NECROSIS of the MYOCARDIUM caused by an obstruction of the blood supply to the heart (CORONARY CIRCULATION). Cardiovascular Stroke,Heart Attack,Myocardial Infarct,Cardiovascular Strokes,Heart Attacks,Infarct, Myocardial,Infarction, Myocardial,Infarctions, Myocardial,Infarcts, Myocardial,Myocardial Infarctions,Myocardial Infarcts,Stroke, Cardiovascular,Strokes, Cardiovascular
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D001769 Blood The body fluid that circulates in the vascular system (BLOOD VESSELS). Whole blood includes PLASMA and BLOOD CELLS.
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog

Related Publications

H Sato, and Z Q Zhao, and D S McGee, and M W Williams, and J W Hammon, and J Vinten-Johansen
December 2001, The Annals of thoracic surgery,
H Sato, and Z Q Zhao, and D S McGee, and M W Williams, and J W Hammon, and J Vinten-Johansen
October 2004, The Journal of thoracic and cardiovascular surgery,
H Sato, and Z Q Zhao, and D S McGee, and M W Williams, and J W Hammon, and J Vinten-Johansen
June 2007, Asian cardiovascular & thoracic annals,
H Sato, and Z Q Zhao, and D S McGee, and M W Williams, and J W Hammon, and J Vinten-Johansen
August 2002, The Journal of thoracic and cardiovascular surgery,
H Sato, and Z Q Zhao, and D S McGee, and M W Williams, and J W Hammon, and J Vinten-Johansen
August 2002, The Thoracic and cardiovascular surgeon,
H Sato, and Z Q Zhao, and D S McGee, and M W Williams, and J W Hammon, and J Vinten-Johansen
May 1983, The Annals of thoracic surgery,
H Sato, and Z Q Zhao, and D S McGee, and M W Williams, and J W Hammon, and J Vinten-Johansen
October 2004, International journal of cardiology,
H Sato, and Z Q Zhao, and D S McGee, and M W Williams, and J W Hammon, and J Vinten-Johansen
July 1998, The Annals of thoracic surgery,
H Sato, and Z Q Zhao, and D S McGee, and M W Williams, and J W Hammon, and J Vinten-Johansen
March 1990, Cardiovascular research,
H Sato, and Z Q Zhao, and D S McGee, and M W Williams, and J W Hammon, and J Vinten-Johansen
December 2012, Cardiovascular toxicology,
Copied contents to your clipboard!