Ca2+ release and activation of K+ and Cl- currents by extracellular ATP in distal nephron epithelial cells. 1995

B Nilius, and J Sehrer, and S Heinke, and G Droogmans
Katholieke Universiteit Leuven, Laboratorium voor Fysiologie, Belgium.

We have measured ionic currents and changes in intracellular Ca2+ concentration ([Ca2+]i) induced by extracellular ATP in single epithelial cells of the distal nephron from toad (A6 cells). ATP increased [Ca2+]i and concomitantly activated ionic currents. The ATP concentration for half-maximal increase in [Ca2+]i was approximately 10 microM. Current activation and elevation of [Ca2+]i also occurred in Ca(2+)-free bath solutions but were abolished by loading the cells via the patch pipette with 10 mM 1,2-bis(2-aminophenoxy)ethane N,N,N',N'-tetraacetic acid (BAPTA) or by preincubating the cells with 10 microM BAPTA-acetoxymethyl ester for 120 min. ATP-activated currents reversed at -53.9 +/- 1.9 mV (n = 22). Tetraethylammonium (TEA, 25 mM), a K+ channel blocker, partially blocked this current but did not affect the Ca2+ transients. The TEA-insensitive component of the current reversed close to Cl- equilibrium potential. 5-Nitro-2-(3-phenylpropylamino) benzoic acid, a putative Cl- channel blocker (100 microM), abolished nearly completely the ATP-activated current. Suramin (100 microM), a P2-purinergic receptor antagonist, strongly attenuated both Ca2+ transients and currents. In cell-attached patches, single channel currents activated by ATP could be observed, i.e., an inwardly rectifying K+ channel with a slope conductance for inward currents of approximately 32 pS and an ohmic Cl- channel with a conductance of 34 pS. It is concluded that ATP activates both Cl- and K+ channels in distal nephron epithelial cells by a Ca(2+)-dependent mechanism.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007477 Ions An atom or group of atoms that have a positive or negative electric charge due to a gain (negative charge) or loss (positive charge) of one or more electrons. Atoms with a positive charge are known as CATIONS; those with a negative charge are ANIONS.
D009399 Nephrons The functional units of the kidney, consisting of the glomerulus and the attached tubule. Nephron
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical

Related Publications

B Nilius, and J Sehrer, and S Heinke, and G Droogmans
August 1994, The Journal of physiology,
B Nilius, and J Sehrer, and S Heinke, and G Droogmans
March 2002, American journal of physiology. Renal physiology,
B Nilius, and J Sehrer, and S Heinke, and G Droogmans
April 1994, Pflugers Archiv : European journal of physiology,
B Nilius, and J Sehrer, and S Heinke, and G Droogmans
July 1991, The Journal of general physiology,
B Nilius, and J Sehrer, and S Heinke, and G Droogmans
April 1988, Pflugers Archiv : European journal of physiology,
B Nilius, and J Sehrer, and S Heinke, and G Droogmans
February 1994, Pflugers Archiv : European journal of physiology,
B Nilius, and J Sehrer, and S Heinke, and G Droogmans
May 2003, The Prostate,
B Nilius, and J Sehrer, and S Heinke, and G Droogmans
November 2008, American journal of physiology. Gastrointestinal and liver physiology,
B Nilius, and J Sehrer, and S Heinke, and G Droogmans
February 1995, The American journal of physiology,
B Nilius, and J Sehrer, and S Heinke, and G Droogmans
March 2004, American journal of respiratory cell and molecular biology,
Copied contents to your clipboard!