Ventricular sensory neurons in canine dorsal root ganglia: effects of adenosine and substance P. 1995

M H Huang, and C Sylvén, and M Horackova, and J A Armour
Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.

Effects elicited by adenosine and substance P on ventricular sensory endings of 14 dorsal root ganglion afferent neurons were studied in situ in anesthetized dogs. Sensory-field application of adenosine (1 microM) increased the activity of these neurons by 179%. Application of a nonspecific adenosine antagonist to epicardial sensory fields suppressed ongoing activity in all 14 neurons by 39%. Application of an A1- or A2-adenosine-receptor antagonist suppressed activity generated by 10 of these neurons by 44 and 59%, respectively. Adenosine applied after A1- or A2-receptor blockade increased activity in 10 neurons by 131 and 145%, respectively, indicating that A1- and A2-receptor effects were not additive. Application of substance P (1 microM) to identified sensory fields increased activity in 12 of these neurons by 169%, whereas application of a substance P-receptor antagonist reduced activity generated by these neurons by 75%. Myocardial ischemia increased activity of nine neurons associated with left ventricular sensory fields by 320%, an effect that was counteracted by the nonspecific adenosine-receptor antagonist. It is concluded that A1- and A2-adenosine receptors, as well as substance P receptors, are present on ventricular epicardial sensory nerve endings of dorsal root ganglion neurons that are tonically active during normal states, becoming further activated during ischemia.

UI MeSH Term Description Entries
D008297 Male Males
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D010496 Pericardium A conical fibro-serous sac surrounding the HEART and the roots of the great vessels (AORTA; VENAE CAVAE; PULMONARY ARTERY). Pericardium consists of two sacs: the outer fibrous pericardium and the inner serous pericardium. The latter consists of an outer parietal layer facing the fibrous pericardium, and an inner visceral layer (epicardium) resting next to the heart, and a pericardial cavity between these two layers. Epicardium,Fibrous Pericardium,Parietal Pericardium,Pericardial Cavity,Pericardial Space,Serous Pericardium,Visceral Pericardium,Cavities, Pericardial,Cavity, Pericardial,Pericardial Cavities,Pericardial Spaces,Pericardium, Fibrous,Pericardium, Parietal,Pericardium, Serous,Pericardium, Visceral,Pericardiums, Fibrous,Pericardiums, Serous,Serous Pericardiums,Space, Pericardial,Spaces, Pericardial
D002120 Calcium Channel Agonists Agents that increase calcium influx into calcium channels of excitable tissues. This causes vasoconstriction in VASCULAR SMOOTH MUSCLE and/or CARDIAC MUSCLE cells as well as stimulation of insulin release from pancreatic islets. Therefore, tissue-selective calcium agonists have the potential to combat cardiac failure and endocrinological disorders. They have been used primarily in experimental studies in cell and tissue culture. Calcium Channel Activators,Calcium Channel Agonists, Exogenous,Calcium Channel Agonist,Exogenous Calcium Channel Agonists,Activators, Calcium Channel,Agonist, Calcium Channel,Agonists, Calcium Channel,Channel Activators, Calcium,Channel Agonist, Calcium,Channel Agonists, Calcium
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005260 Female Females
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts

Related Publications

M H Huang, and C Sylvén, and M Horackova, and J A Armour
January 2003, Methods in molecular biology (Clifton, N.J.),
M H Huang, and C Sylvén, and M Horackova, and J A Armour
November 2014, Molecular pain,
M H Huang, and C Sylvén, and M Horackova, and J A Armour
May 1991, Journal of the autonomic nervous system,
M H Huang, and C Sylvén, and M Horackova, and J A Armour
July 1990, Neuroscience letters,
M H Huang, and C Sylvén, and M Horackova, and J A Armour
April 1991, Brain research. Developmental brain research,
M H Huang, and C Sylvén, and M Horackova, and J A Armour
January 1994, Journal of neuroscience research,
M H Huang, and C Sylvén, and M Horackova, and J A Armour
December 1993, Neuroscience letters,
M H Huang, and C Sylvén, and M Horackova, and J A Armour
January 1987, Comparative biochemistry and physiology. B, Comparative biochemistry,
M H Huang, and C Sylvén, and M Horackova, and J A Armour
April 1985, Experientia,
M H Huang, and C Sylvén, and M Horackova, and J A Armour
June 1983, Brain research,
Copied contents to your clipboard!