Lipopolysaccharide induces upregulation of neutral endopeptidase 24.11 on human neutrophils: involvement of the CD14 receptor. 1995

C Fagny, and A Marchant, and E De Prez, and M Goldman, and M Deschodt-Lanckman
Laboratoire Pluridisciplinaire de Recherche Expérimentale Biomédicale, Faculté de Médecine, Brussels, Belgium.

1. As lipopolysaccharide is a major stimulator of neutrophil responses during Gram-negative bacterial infections, we studied its effect on the membrane expression of neutral endopeptidase 24.11/CD10 on neutrophils in a model of endotoxaemia in vitro. Lipopolysaccharide added to human whole-blood induced a marked and sustained CD10/neutral endopeptidase upregulation that was already detectable at 0.1 ng/ml and was maximal at a lipopolysaccharide concentration of 10 ng/ml. 2. We observed that neither tumour necrosis factor-alpha nor any newly synthesized protein was involved in the upregulation observed after 1 h incubation with 10 ng/ml lipopolysaccharide. 3. We further studied whether the lipopolysaccharide-induced CD10/neutral endopeptidase upregulation was mediated by lipopolysaccharide binding to the neutrophil CD14 receptor. Incubation of whole blood with an anti-CD14 monoclonal antibody before the addition of 0.1 ng/ml or 0.5 ng/ml lipopolysaccharide resulted in complete inhibition of CD10/neutral endopeptidase upregulation. In contrast, at a lipopolysaccharide concentration of 10 ng/ml, the anti-CD14 monoclonal antibody had an incomplete blocking effect. 4. The differential requirement for the CD14 receptor, depending on the lipopolysaccharide dose, was confirmed by the study of a patient suffering from paroxysmal nocturnal haemoglobinuria (in whom a complete defect in neutrophil CD14 expression was previously documented). 5. We finally confirmed these results using purified neutrophils, demonstrating that lipopolysaccharide-induced CD10/neutral endopeptidase upregulation depends on direct interaction with neutrophil CD14.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006457 Hemoglobinuria, Paroxysmal A condition characterized by the recurrence of HEMOGLOBINURIA caused by intravascular HEMOLYSIS. In cases occurring upon cold exposure (paroxysmal cold hemoglobinuria), usually after infections, there is a circulating antibody which is also a cold hemolysin. In cases occurring during or after sleep (paroxysmal nocturnal hemoglobinuria), the clonal hematopoietic stem cells exhibit a global deficiency of cell membrane proteins. Paroxysmal Cold Hemoglobinuria,Paroxysmal Nocturnal Hemoglobinuria,Marchiafava-Micheli Syndrome,Paroxysmal Hemoglobinuria,Paroxysmal Hemoglobinuria, Cold,Paroxysmal Hemoglobinuria, Nocturnal,Cold Paroxysmal Hemoglobinuria,Hemoglobinuria, Cold Paroxysmal,Hemoglobinuria, Nocturnal Paroxysmal,Hemoglobinuria, Paroxysmal Cold,Hemoglobinuria, Paroxysmal Nocturnal,Marchiafava Micheli Syndrome,Nocturnal Paroxysmal Hemoglobinuria,Syndrome, Marchiafava-Micheli
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015214 Antigens, Differentiation, Myelomonocytic Surface antigens expressed on myeloid cells of the granulocyte-monocyte-histiocyte series during differentiation. Analysis of their reactivity in normal and malignant myelomonocytic cells is useful in identifying and classifying human leukemias and lymphomas. Differentiation Antigens, Myelomonocytic,Myelomonocytic Differentiation Antigens,Antigens, Myelomonocytic, Differentiation,Antigens, Myelomonocytic Differentiation
D015260 Neprilysin Enzyme that is a major constituent of kidney brush-border membranes and is also present to a lesser degree in the brain and other tissues. It preferentially catalyzes cleavage at the amino group of hydrophobic residues of the B-chain of insulin as well as opioid peptides and other biologically active peptides. The enzyme is inhibited primarily by EDTA, phosphoramidon, and thiorphan and is reactivated by zinc. Neprilysin is identical to common acute lymphoblastic leukemia antigen (CALLA Antigen), an important marker in the diagnosis of human acute lymphocytic leukemia. There is no relationship with CALLA PLANT. Antigens, CD10,Antigens, Leukemia, Common Acute Lymphoblastic,CALLA Antigen,CD10 Antigens,Common Acute Lymphoblastic Leukemia Antigens,Endopeptidase-24.11,Enkephalin Dipeptidyl Carboxypeptidase,Enkephalinase,Kidney-Brush-Border Neutral Proteinase,Membrane Metallo-Endopeptidase,Atriopeptidase,CD10 Antigen,Enkephalinase-24.11,Neutral Endopeptidase,Neutral Endopeptidase 24.11,Thermolysin-Like Metalloendopeptidase,YGG-Forming Enzyme,Antigen, CD10,Carboxypeptidase, Enkephalin Dipeptidyl,Dipeptidyl Carboxypeptidase, Enkephalin,Endopeptidase 24.11,Endopeptidase 24.11, Neutral,Endopeptidase, Neutral,Enkephalinase 24.11,Enzyme, YGG-Forming,Kidney Brush Border Neutral Proteinase,Membrane Metallo Endopeptidase,Metallo-Endopeptidase, Membrane,Metalloendopeptidase, Thermolysin-Like,Neutral Proteinase, Kidney-Brush-Border,Thermolysin Like Metalloendopeptidase,YGG Forming Enzyme
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation

Related Publications

C Fagny, and A Marchant, and E De Prez, and M Goldman, and M Deschodt-Lanckman
December 1985, Proceedings of the National Academy of Sciences of the United States of America,
C Fagny, and A Marchant, and E De Prez, and M Goldman, and M Deschodt-Lanckman
August 1989, The Journal of biological chemistry,
C Fagny, and A Marchant, and E De Prez, and M Goldman, and M Deschodt-Lanckman
May 1996, The Journal of clinical investigation,
C Fagny, and A Marchant, and E De Prez, and M Goldman, and M Deschodt-Lanckman
January 1988, Advances in experimental medicine and biology,
C Fagny, and A Marchant, and E De Prez, and M Goldman, and M Deschodt-Lanckman
December 1987, The Biochemical journal,
C Fagny, and A Marchant, and E De Prez, and M Goldman, and M Deschodt-Lanckman
August 1992, The Biochemical journal,
C Fagny, and A Marchant, and E De Prez, and M Goldman, and M Deschodt-Lanckman
January 1993, Seminars in nephrology,
C Fagny, and A Marchant, and E De Prez, and M Goldman, and M Deschodt-Lanckman
August 1993, Biochemical Society transactions,
C Fagny, and A Marchant, and E De Prez, and M Goldman, and M Deschodt-Lanckman
May 1993, The Biochemical journal,
C Fagny, and A Marchant, and E De Prez, and M Goldman, and M Deschodt-Lanckman
August 1990, The Journal of biological chemistry,
Copied contents to your clipboard!