The impact of glutathione s-transferase M1 and cytochrome P450 1A1 genotypes on white-blood-cell polycyclic aromatic hydrocarbon-DNA adduct levels in humans. 1995

N Rothman, and P G Shields, and M C Poirier, and A M Harrington, and D P Ford, and P T Strickland
Environmental Epidemiology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

Carcinogenic polycyclic aromatic hydrocarbons (PAHs) form DNA adducts via a complex metabolic activation pathway that includes cytochrome P450 (CYP) 1A1, whereas intermediate metabolites can be detoxified by conjugation through pathways including glutathione s-transferase M1 (GSTM1). PAH-DNA adducts can be measured in peripheral white blood cells (WBCs) and should reflect the net effect of competing activation and detoxification pathways and DNA repair as well as exposure. We have previously shown that WBC PAH-DNA adducts measured by an enzyme-linked immunosorbent assay (ELISA) were associated with recent, frequent consumption of charbroiled food among 47 nonsmoking wildland fire-fighters who provided two blood samples 8 wk apart. In the investigation reported here, which was performed in the same population, we measured the association between the GSTM1 null genotype, which results in loss of enzyme activity, and PAH-DNA adduct levels, hypothesizing that subjects with this genotype would have higher levels of DNA adducts because of their decreased ability to detoxify PAH metabolites. However, PAH-DNA adduct levels were nonsignificantly lower in subjects with the GSTM1 null genotype (n = 28) compared with other subjects (n = 19) (median 0.04 fmol/microgram DNA vs 0.07 fmol/microgram DNA, respectively, P = 0.45, Wilcoxon rank-sum test). Adduct levels were also lower in the nine subjects heterozygous or homozygous for the CYP1A1 exon 7 polymorphism (which codes for a valine rather than isoleucine and is thought to be associated with greater CYP1A1 activity) compared with the 38 wild-type subjects (P = 0.12). In the entire group, there was a positive association between consuming charbroiled food and PAH-DNA adduct formation (r = 0.24, P = 0.02, Spearman rank-order correlation). This association was weaker in the subgroup of subjects with the GSTM1 null genotype (r = 0.03, P = 0.84) and stronger among the remaining subjects (r = 0.57, P = 0.0002). These results suggest that the GSTM1 null genotype and CYP1A1 exon 7 polymorphism are not associated with increased susceptibility for PAH-DNA adduct formation in peripheral WBCs measured by ELISA in nonsmoking populations.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007962 Leukocytes White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES). Blood Cells, White,Blood Corpuscles, White,White Blood Cells,White Blood Corpuscles,Blood Cell, White,Blood Corpuscle, White,Corpuscle, White Blood,Corpuscles, White Blood,Leukocyte,White Blood Cell,White Blood Corpuscle
D008460 Meat The edible portions of any animal used for food including cattle, swine, goats/sheep, poultry, fish, shellfish, and game. Meats
D008658 Inactivation, Metabolic Reduction of pharmacologic activity or toxicity of a drug or other foreign substance by a living system, usually by enzymatic action. It includes those metabolic transformations that make the substance more soluble for faster renal excretion. Detoxication, Drug, Metabolic,Drug Detoxication, Metabolic,Metabolic Detoxication, Drug,Detoxification, Drug, Metabolic,Metabolic Detoxification, Drug,Metabolic Drug Inactivation,Detoxication, Drug Metabolic,Detoxication, Metabolic Drug,Detoxification, Drug Metabolic,Drug Inactivation, Metabolic,Drug Metabolic Detoxication,Drug Metabolic Detoxification,Inactivation, Metabolic Drug,Metabolic Drug Detoxication,Metabolic Inactivation
D011083 Polycyclic Compounds Compounds which contain two or more rings in their structure. Compounds, Polycyclic
D011084 Polycyclic Aromatic Hydrocarbons Aromatic hydrocarbons that contain extended fused-ring structures. Polycyclic Aromatic Hydrocarbon,Polycyclic Hydrocarbons, Aromatic,Polynuclear Aromatic Hydrocarbon,Polynuclear Aromatic Hydrocarbons,Aromatic Hydrocarbon, Polycyclic,Aromatic Hydrocarbon, Polynuclear,Aromatic Hydrocarbons, Polycyclic,Aromatic Hydrocarbons, Polynuclear,Aromatic Polycyclic Hydrocarbons,Hydrocarbon, Polycyclic Aromatic,Hydrocarbon, Polynuclear Aromatic,Hydrocarbons, Aromatic Polycyclic,Hydrocarbons, Polycyclic Aromatic,Hydrocarbons, Polynuclear Aromatic
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D003296 Cooking The art or practice of preparing food. It includes the preparation of special foods for diets in various diseases. Cookery
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked

Related Publications

N Rothman, and P G Shields, and M C Poirier, and A M Harrington, and D P Ford, and P T Strickland
November 1999, Archives of toxicology,
N Rothman, and P G Shields, and M C Poirier, and A M Harrington, and D P Ford, and P T Strickland
February 2000, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology,
N Rothman, and P G Shields, and M C Poirier, and A M Harrington, and D P Ford, and P T Strickland
April 2000, European journal of clinical investigation,
N Rothman, and P G Shields, and M C Poirier, and A M Harrington, and D P Ford, and P T Strickland
November 1994, Carcinogenesis,
N Rothman, and P G Shields, and M C Poirier, and A M Harrington, and D P Ford, and P T Strickland
October 2000, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology,
N Rothman, and P G Shields, and M C Poirier, and A M Harrington, and D P Ford, and P T Strickland
January 2002, Teratogenesis, carcinogenesis, and mutagenesis,
N Rothman, and P G Shields, and M C Poirier, and A M Harrington, and D P Ford, and P T Strickland
January 2000, Anticancer research,
N Rothman, and P G Shields, and M C Poirier, and A M Harrington, and D P Ford, and P T Strickland
April 2009, Legal medicine (Tokyo, Japan),
N Rothman, and P G Shields, and M C Poirier, and A M Harrington, and D P Ford, and P T Strickland
January 2008, Clinical chemistry and laboratory medicine,
N Rothman, and P G Shields, and M C Poirier, and A M Harrington, and D P Ford, and P T Strickland
December 1995, Cancer research,
Copied contents to your clipboard!