EEG slow waves and sleep spindles: windows on the sleeping brain. 1995

D J Dijk
Institute of Pharmacology, University of Zürich, Switzerland.

Slow waves and sleep spindles are prominent features of the EEG in non-REM sleep and some of the neurophysiological mechanisms underlying their genesis have been elucidated. In humans, slow-wave activity in non-REM sleep increases and EEG activity in the frequency range of sleep spindles decreases when wakefulness prior to sleep is varied from 2 to 40 h. The opposite changes are observed in the course of sleep, even when sleep is scheduled out of phase with the circadian rhythm of sleep propensity. Within non-REM sleep episodes the association between slow waves and sleep spindles is bi-phasic: both activities are correlated positively at the beginning and end of non-REM sleep episodes whereas in the middle part of non-REM sleep episodes high values of slow-wave activity coincide with low levels of spindle activity. An extension of wakefulness enhances the rise rate of slow-wave and spindle activity at the onset of sleep. Since macroscopic slow waves and sleep spindles both are dependent on hyperpolarization and synchronization of neurons in thalamo-cortical and cortical circuits, the sleep deprivation induced changes in these EEG activities may be related to reduced activating input to thalamo-cortical and cortical neurons, local facilitation of their hyperpolarization or facilitation of their synchronization. The precise regulation of slow-wave and spindle activity as a function of the duration and intensity of prior sleep and wakefulness demonstrates that these EEG oscillations are accurate indicators of non-REM-sleep homeostasis and suggests that they are fundamental to the sleeping brain.

UI MeSH Term Description Entries
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012890 Sleep A readily reversible suspension of sensorimotor interaction with the environment, usually associated with recumbency and immobility. Sleep Habits,Sleeping Habit,Sleeping Habits,Habit, Sleep,Habit, Sleeping,Habits, Sleep,Habits, Sleeping,Sleep Habit
D014851 Wakefulness A state in which there is an enhanced potential for sensitivity and an efficient responsiveness to external stimuli. Wakefulnesses

Related Publications

D J Dijk
April 1994, Electroencephalography and clinical neurophysiology,
D J Dijk
October 2018, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D J Dijk
September 1965, Archiv fur Psychiatrie und Nervenkrankheiten,
D J Dijk
January 2013, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
D J Dijk
August 1984, Electroencephalography and clinical neurophysiology,
D J Dijk
March 2003, Journal of sleep research,
Copied contents to your clipboard!