Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. 1995

F A Chaudhry, and K P Lehre, and M van Lookeren Campagne, and O P Ottersen, and N C Danbolt, and J Storm-Mathisen
Anatomical Institute, University of Oslo, Norway.

The glutamate transporters GLT-1 and GLAST were studied by immunogold labeling on ultrathin sections of rat brain tissue embedded in acrylic resins at low temperature after freeze substitution. Both proteins were selective markers of astrocytic plasma membranes. GLT-1 was much higher in hippocampal astrocytes than in cerebellar astrocytes. Astroglial membrane GLAST densities ranked as follows: Bergmann > cerebellar granular layer approximately hippocampus > cerebellar white matter. No astrocyte appeared unlabeled. Astrocytic membranes facing capillaries, pia, or stem dendrites were lower in glutamate transporters than those facing nerve terminals, axons, and spines. Parallel fiber boutons (glutamatergic) synapsin on interneuron dendritic shafts were surrounded by lower transporter densities than those synapsing on Purkinje cell spines. Our findings suggest the localizations of glutamate transporters are carefully regulated.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

F A Chaudhry, and K P Lehre, and M van Lookeren Campagne, and O P Ottersen, and N C Danbolt, and J Storm-Mathisen
January 1990, Journal of neurosurgical sciences,
F A Chaudhry, and K P Lehre, and M van Lookeren Campagne, and O P Ottersen, and N C Danbolt, and J Storm-Mathisen
November 2004, Neuroscience letters,
F A Chaudhry, and K P Lehre, and M van Lookeren Campagne, and O P Ottersen, and N C Danbolt, and J Storm-Mathisen
March 1994, The Journal of comparative neurology,
F A Chaudhry, and K P Lehre, and M van Lookeren Campagne, and O P Ottersen, and N C Danbolt, and J Storm-Mathisen
March 2001, Journal of neuroscience research,
F A Chaudhry, and K P Lehre, and M van Lookeren Campagne, and O P Ottersen, and N C Danbolt, and J Storm-Mathisen
November 2000, Cerebral cortex (New York, N.Y. : 1991),
F A Chaudhry, and K P Lehre, and M van Lookeren Campagne, and O P Ottersen, and N C Danbolt, and J Storm-Mathisen
January 2017, Advances in neurobiology,
F A Chaudhry, and K P Lehre, and M van Lookeren Campagne, and O P Ottersen, and N C Danbolt, and J Storm-Mathisen
January 2011, The Journal of biological chemistry,
F A Chaudhry, and K P Lehre, and M van Lookeren Campagne, and O P Ottersen, and N C Danbolt, and J Storm-Mathisen
July 1997, Journal of submicroscopic cytology and pathology,
F A Chaudhry, and K P Lehre, and M van Lookeren Campagne, and O P Ottersen, and N C Danbolt, and J Storm-Mathisen
January 1997, Visual neuroscience,
F A Chaudhry, and K P Lehre, and M van Lookeren Campagne, and O P Ottersen, and N C Danbolt, and J Storm-Mathisen
June 1989, Gamete research,
Copied contents to your clipboard!