Localization of human immunodeficiency virus Rev in transfected and virus-infected cells. 1995

L Luznik, and M E Martone, and G Kraus, and Y Zhang, and Y Xu, and M H Ellisman, and F Wong-Staal
Department of Medicine, UCSD School of Medicine, La Jolla, California 92093-0665, USA.

The rev gene product of human immunodeficiency virus (HIV) is obligatory for viral replication. Rev interacts specifically with a structured RNA sequence within the viral genome termed the REV response element (RRE). Although the importance of Rev for the expression of viral proteins is well documented, its functional mechanism remains unresolved. Previous studies identified Rev in the absence of RRE to be a nuclear protein localized primarily within the nucleoli. To extend our understanding of the role of Rev in viral replication, immunolocalization studies of Rev and other nuclear components were carried out in transfected cells expressing both the Rev protein and RRE-containing mRNA and in cells infected with HIV. In both types of cells, Rev-like immunoreactivity was distributed both in the nucleoplasm and cytoplasm. Within the nucleus, Rev immunoreactivity was not evenly distributed but was present within focal concentrations. In transfected cells that were double labeled for Rev and SC-35, which labels a known component of spliceosomes, the foci of Rev labeling were distinct from the "speckles" labeled by SC-35, although Rev foci and speckles were often juxtaposed. In addition, morphological changes in the three-dimensional network of speckles were observed in both transfected cells expressing both the Rev protein and RRE-containing mRNA and in cells infected with HIV-1 and HIV-2. Our observations are consistent with the proposed dual role of Rev in mRNA transport and splicing.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002466 Cell Nucleolus Within most types of eukaryotic CELL NUCLEUS, a distinct region, not delimited by a membrane, in which some species of rRNA (RNA, RIBOSOMAL) are synthesized and assembled into ribonucleoprotein subunits of ribosomes. In the nucleolus rRNA is transcribed from a nucleolar organizer, i.e., a group of tandemly repeated chromosomal genes which encode rRNA and which are transcribed by RNA polymerase I. (Singleton & Sainsbury, Dictionary of Microbiology & Molecular Biology, 2d ed) Plasmosome,Cell Nucleoli,Nucleoli, Cell,Nucleolus, Cell,Plasmosomes
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications

Related Publications

L Luznik, and M E Martone, and G Kraus, and Y Zhang, and Y Xu, and M H Ellisman, and F Wong-Staal
September 1990, Virology,
L Luznik, and M E Martone, and G Kraus, and Y Zhang, and Y Xu, and M H Ellisman, and F Wong-Staal
January 1991, Human gene therapy,
L Luznik, and M E Martone, and G Kraus, and Y Zhang, and Y Xu, and M H Ellisman, and F Wong-Staal
November 1993, Journal of virology,
L Luznik, and M E Martone, and G Kraus, and Y Zhang, and Y Xu, and M H Ellisman, and F Wong-Staal
January 1992, Archives of virology,
L Luznik, and M E Martone, and G Kraus, and Y Zhang, and Y Xu, and M H Ellisman, and F Wong-Staal
January 1988, Ultrastructural pathology,
L Luznik, and M E Martone, and G Kraus, and Y Zhang, and Y Xu, and M H Ellisman, and F Wong-Staal
April 1992, Journal of virology,
L Luznik, and M E Martone, and G Kraus, and Y Zhang, and Y Xu, and M H Ellisman, and F Wong-Staal
November 1993, Journal of virology,
L Luznik, and M E Martone, and G Kraus, and Y Zhang, and Y Xu, and M H Ellisman, and F Wong-Staal
June 1989, Cell,
L Luznik, and M E Martone, and G Kraus, and Y Zhang, and Y Xu, and M H Ellisman, and F Wong-Staal
January 1991, Advances in experimental medicine and biology,
L Luznik, and M E Martone, and G Kraus, and Y Zhang, and Y Xu, and M H Ellisman, and F Wong-Staal
September 1995, Journal of virology,
Copied contents to your clipboard!