Induction of osteoclast characteristics in cultured avian blood monocytes; modulation by osteoblasts and 1,25-(OH)2 vitamin D3. 1995

R J van't Hof, and A C Tuinenburg-Bol Raap, and P J Nijweide
Department of Cell Biology, University of Leiden, The Netherlands.

It has been established, that the osteoclast is derived from the haemopoietic stem cell, but its exact lineage is still controversial. It is sometimes suggested, that osteoclasts and monocytes/macrophages are related cells. It has also been suggested that osteoclast differentiation is regulated by osteoblasts and 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). In the present paper we addressed the question whether avian monocytes can differentiate into osteoclasts in vitro, using an array of immunocytochemical, enzyme cytochemical and function markers. We have also determined the effects of osteoblasts, osteoblast conditioned medium and 1,25-(OH)2D3 on the expression of osteoclastic features on monocytes during culture. Monocytes developed tartrate resistant acid phosphatase (TRAcP) enzyme activity and antigens for all anti-osteoclast antibodies tested, during culture. However, they did not acquire the ability to resorb dentine and still showed phagocytosis of latex spheres. This indicates that the monocytes developed into cells resembling osteoclasts but lacking their function while retaining the function of macrophages. Osteoblast conditioned medium stimulated TRAcP enzyme activity and proliferation of monocytes in cultures. Addition of osteoblasts or osteoblast conditioned medium to monocyte cultures on dentine in the presence or absence of 1,25-(OH)2D3 did not result in the generation of genuine osteoclasts, nor in pit formation. 1,25-(OH)2D3 appeared to be cytotoxic to the avian monocytes in concentrations considered optimal for mouse osteoclast formation. These results suggest that avian monocytes do not readily differentiate into osteoclasts under in vitro conditions that stimulate osteoclast differentiation from bone marrow derived haemopoietic cells. Furthermore, labelling with anti-osteoclast antibodies and TRAcP as osteoclast-markers should be used only with great caution in the identification of osteoclasts formed in vitro.

UI MeSH Term Description Entries
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D010010 Osteoclasts A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption. Odontoclasts,Cementoclast,Cementoclasts,Odontoclast,Osteoclast
D011784 Quail Common name for two distinct groups of BIRDS in the order GALLIFORMES: the New World or American quails of the family Odontophoridae and the Old World quails in the genus COTURNIX, family Phasianidae. Quails
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R J van't Hof, and A C Tuinenburg-Bol Raap, and P J Nijweide
December 1990, Journal of immunology (Baltimore, Md. : 1950),
R J van't Hof, and A C Tuinenburg-Bol Raap, and P J Nijweide
October 2017, The Journal of steroid biochemistry and molecular biology,
R J van't Hof, and A C Tuinenburg-Bol Raap, and P J Nijweide
May 1997, Archives of dermatological research,
R J van't Hof, and A C Tuinenburg-Bol Raap, and P J Nijweide
November 1993, Biochemistry and molecular biology international,
R J van't Hof, and A C Tuinenburg-Bol Raap, and P J Nijweide
April 1999, Der Internist,
R J van't Hof, and A C Tuinenburg-Bol Raap, and P J Nijweide
October 1989, Calcified tissue international,
R J van't Hof, and A C Tuinenburg-Bol Raap, and P J Nijweide
November 1982, The Journal of biological chemistry,
R J van't Hof, and A C Tuinenburg-Bol Raap, and P J Nijweide
January 1990, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association,
R J van't Hof, and A C Tuinenburg-Bol Raap, and P J Nijweide
May 2002, Digestive diseases and sciences,
R J van't Hof, and A C Tuinenburg-Bol Raap, and P J Nijweide
August 1987, British journal of haematology,
Copied contents to your clipboard!