Differential sensitivity of human naive and memory CD4+ T cells for dexamethasone. 1995

E W Nijhuis, and B Hinloopen, and R A van Lier, and L Nagelkerken
Division of Immunological and Infectious Diseases, TNO Prevention and Health, Leiden, The Netherlands.

Human CD45RA+ ('naive') and CD45RO+ ('memory') CD4+ T cells were compared with respect to their sensitivity to dexamethasone (DEX). In three different activation pathways, i.e. (i) immobilized anti-CD3, (ii) immobilized anti-CD3 plus soluble anti-CD28 and (iii) soluble anti-CD2 plus soluble anti-CD28, naive CD4+ T cells appeared more sensitive to DEX than memory CD4+ T cells. In the anti-CD3 system this difference in sensitivity was apparent at a suboptimal DEX concentration. Addition of anti-CD28 rendered the cells largely insensitive to DEX, indicating that the CD28 pathway is less dependent of the DEX-sensitive transcription factor AP-1. However, the alternative pathway of T cell activation through CD2/CD28 triggering was highly sensitive to DEX when naive cells were studied; in the case of memory cells, at least a 10-fold higher DEX concentration was needed to achieve a comparable inhibition. The strong inhibitory effect of DEX on naive CD4+ T cells stimulated via the alternative pathway was completely abrogated by activation of protein kinase C (PKC) with phorbol myristate acetate. Our data suggest that at least two different mechanisms contribute to DEX resistance, i.e. CD28 triggering and PKC activation, which may occur more effectively in memory cells making them less sensitive to DEX.

UI MeSH Term Description Entries
D007156 Immunologic Memory The altered state of immunologic responsiveness resulting from initial contact with antigen, which enables the individual to produce antibodies more rapidly and in greater quantity in response to secondary antigenic stimulus. Immune Memory,Immunological Memory,Memory, Immunologic,Immune Memories,Immunologic Memories,Immunological Memories,Memory, Immune,Memory, Immunological
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D015704 CD4 Antigens 55-kDa antigens found on HELPER-INDUCER T-LYMPHOCYTES and on a variety of other immune cell types. They are members of the immunoglobulin supergene family and are implicated as associative recognition elements in MAJOR HISTOCOMPATIBILITY COMPLEX class II-restricted immune responses. On T-lymphocytes they define the helper/inducer subset. T4 antigens also serve as INTERLEUKIN-15 receptors and bind to the HIV receptors, binding directly to the HIV ENVELOPE PROTEIN GP120. Antigens, CD4,CD4 Molecule,CD4 Receptor,CD4 Receptors,Receptors, CD4,T4 Antigens, T-Cell,CD4 Antigen,Receptors, Surface CD4,Surface CD4 Receptor,Antigen, CD4,Antigens, T-Cell T4,CD4 Receptor, Surface,CD4 Receptors, Surface,Receptor, CD4,Surface CD4 Receptors,T-Cell T4 Antigens,T4 Antigens, T Cell
D018106 CD28 Antigens Costimulatory T-LYMPHOCYTE receptors that have specificity for CD80 ANTIGEN and CD86 ANTIGEN. Activation of this receptor results in increased T-cell proliferation, cytokine production and promotion of T-cell survival. Antigens, CD28,CD28 Antigen,T-Cell-Specific Surface Glycoprotein CD28,TP44 Receptor,Antigen, CD28,Receptor, TP44,T Cell Specific Surface Glycoprotein CD28
D018801 CD2 Antigens Glycoprotein members of the immunoglobulin superfamily which participate in T-cell adhesion and activation. They are expressed on most peripheral T-lymphocytes, natural killer cells, and thymocytes, and function as co-receptors or accessory molecules in the T-cell receptor complex. Antigens, CD2,T11 Erythrocyte-Binding Glycoprotein,CD2 Antigen,Antigen, CD2,Erythrocyte-Binding Glycoprotein, T11,T11 Erythrocyte Binding Glycoprotein

Related Publications

E W Nijhuis, and B Hinloopen, and R A van Lier, and L Nagelkerken
August 1997, European journal of immunology,
E W Nijhuis, and B Hinloopen, and R A van Lier, and L Nagelkerken
January 1992, European journal of immunology,
E W Nijhuis, and B Hinloopen, and R A van Lier, and L Nagelkerken
February 1993, Cellular immunology,
E W Nijhuis, and B Hinloopen, and R A van Lier, and L Nagelkerken
October 2002, Journal of immunology (Baltimore, Md. : 1950),
E W Nijhuis, and B Hinloopen, and R A van Lier, and L Nagelkerken
October 2000, Journal of immunology (Baltimore, Md. : 1950),
E W Nijhuis, and B Hinloopen, and R A van Lier, and L Nagelkerken
July 1993, The American review of respiratory disease,
E W Nijhuis, and B Hinloopen, and R A van Lier, and L Nagelkerken
January 2022, Clinical and experimental immunology,
E W Nijhuis, and B Hinloopen, and R A van Lier, and L Nagelkerken
December 2010, The Journal of experimental medicine,
E W Nijhuis, and B Hinloopen, and R A van Lier, and L Nagelkerken
January 2018, Frontiers in immunology,
E W Nijhuis, and B Hinloopen, and R A van Lier, and L Nagelkerken
December 2001, The Journal of experimental medicine,
Copied contents to your clipboard!