Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. 1995

E Gazit, and A Boman, and H G Boman, and Y Shai
Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel.

Cecropins are positively charged antibacterial polypeptides that were originally isolated from insects. Later on a mammalian homologue, cecropin P1 (CecP), was isolated from pig intestines. While insect cecropins are highly potent against both Gram-negative and Gram-positive bacteria, CecP is as active as insect cecropins against Gram-negative but has reduced activity against Gram-positive bacteria. To gain insight into the mechanism of action of CecP and the molecular basis of its antibacterial specificity, the peptide and its proline incorporated analogue (at the conserved position found in insect cecropins), P22-CecP, were synthesized and labeled on their N-terminal amino-acids with fluorescent probes, without significantly affecting their antibacterial activities. Fluorescence studies indicated that the N-terminal of CecP is located on the surface of phospholipid membranes. Binding experiments revealed that CecP binds acidic phosphatidylserine/phosphatidylcholine (PS/PC) vesicles better than zwitterionic PC vesicles, which correlates with its ability to permeate the former better than the latter. The shape of the binding isotherms suggest that CecP, like insect cecropin, binds phospholipids in a simple, noncooperative manner. However, resonance energy transfer (RET) measurements revealed that, unlike insect cecropins, CecP does not aggregate in the membrane even at relatively high peptide to lipid ratios. The stoichiometry of CecP binding to vesicles suggests that amount of CecP sufficient to form a monolayer causes vesicle permeation. In spite of the incorporation of the conserved proline in P22-CecP, the analogue has reduced antibacterial activity, which correlates with its reduced alpha-helical structure and its lower partitioning and membrane permeating activity with phospholipid vesicles. Taken together, our results support a mechanism in which CecP disrupts the structure of the bacterial membrane by (i) binding of peptide monomers to the acidic surface of the bacterial membrane and (ii) disintegrating the bacterial membrane by disrupting the lipid packing in the bilayers. These results, combined with data reported for other antibacterial polypeptides, suggest that the organization of peptide monomers within phospholipid membranes contributes to Gram-positive/Gram-negative antibacterial specificity.

UI MeSH Term Description Entries
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004735 Energy Transfer The transfer of energy of a given form among different scales of motion. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed). It includes the transfer of kinetic energy and the transfer of chemical energy. The transfer of chemical energy from one molecule to another depends on proximity of molecules so it is often used as in techniques to measure distance such as the use of FORSTER RESONANCE ENERGY TRANSFER. Transfer, Energy
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

E Gazit, and A Boman, and H G Boman, and Y Shai
May 1996, Journal of molecular biology,
E Gazit, and A Boman, and H G Boman, and Y Shai
October 1992, European journal of biochemistry,
E Gazit, and A Boman, and H G Boman, and Y Shai
November 1974, Nature,
E Gazit, and A Boman, and H G Boman, and Y Shai
January 1975, Biochemical Society transactions,
E Gazit, and A Boman, and H G Boman, and Y Shai
October 1975, The Journal of cell biology,
E Gazit, and A Boman, and H G Boman, and Y Shai
January 1996, Advances in experimental medicine and biology,
E Gazit, and A Boman, and H G Boman, and Y Shai
November 1988, International journal of peptide and protein research,
E Gazit, and A Boman, and H G Boman, and Y Shai
September 1982, Biochemistry,
Copied contents to your clipboard!