Fatty acid flip-flop in phospholipid bilayers is extremely fast. 1995

F Kamp, and D Zakim, and F Zhang, and N Noy, and J A Hamilton
Department of Biophysics, Boston University School of Medicine, Massachusetts 02118, USA.

The rate of movement of fatty acids (FA) across phospholipid bilayers is an important consideration for their mechanism of transport across cell membranes but has not yet been measured. When FA move undirectionally across phospholipid bilayers, the rapid movement of un-ionized FA compared to ionized FA results in transport of protons. We have previously used this property to show that FA move spontaneously ("flip-flop") across the bilayer of small unilamellar vesicles within approximately 1 s (Kamp & Hamilton, 1992, 1993). This work extends the time resolution of this assay into the millisecond time range by use of stopped flow fluorometry. In small unilamellar vesicles (diameter, approximately 25 nm) at neutral pH, flip-flop of all fatty acids studied (lauric, myristic, palmitic, oleic, and stearic) was > or = 80% complete within 5-10 ms. In large unilamellar vesicles (diameter, approximately 100 nm), the same fatty acids exhibited fast flip-flop but with a measureable rate (t 1/2 = 23 +/- 12 ms). The calculated pseudounimolecular rate constant of the un-ionized FA (kFAH) approximately 15 s-1. There was no dependence of the flip-flop rate on the fatty acid chain length or structure. We also monitored the rate of desorption and transbilayer movement of (anthroyloxy)stearic acid in small unilamellar vesicles. Whereas previous studies suggested slow flip-flop of this FA analogue, the present studies suggest that (anthroyloxy)stearic acid flip-flops rapidly and that earlier studies did not truly measure the transbilayer movement step. These findings further support the view that proteins are not required for translocation of FA across cell membranes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001190 Arylsulfonates Organic sulfonic acid esters or salts which contain an aromatic hydrocarbon radical. Aryl Sulfonates,Sulfonates, Aryl
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill

Related Publications

F Kamp, and D Zakim, and F Zhang, and N Noy, and J A Hamilton
May 2000, The Journal of membrane biology,
F Kamp, and D Zakim, and F Zhang, and N Noy, and J A Hamilton
November 2006, The journal of physical chemistry. B,
F Kamp, and D Zakim, and F Zhang, and N Noy, and J A Hamilton
November 1985, FEBS letters,
F Kamp, and D Zakim, and F Zhang, and N Noy, and J A Hamilton
April 2017, Langmuir : the ACS journal of surfaces and colloids,
F Kamp, and D Zakim, and F Zhang, and N Noy, and J A Hamilton
December 1992, Proceedings of the National Academy of Sciences of the United States of America,
F Kamp, and D Zakim, and F Zhang, and N Noy, and J A Hamilton
February 2005, Journal of lipid research,
F Kamp, and D Zakim, and F Zhang, and N Noy, and J A Hamilton
February 2010, The journal of physical chemistry. B,
F Kamp, and D Zakim, and F Zhang, and N Noy, and J A Hamilton
July 2012, Journal of the American Chemical Society,
F Kamp, and D Zakim, and F Zhang, and N Noy, and J A Hamilton
March 2010, Journal of fluorescence,
F Kamp, and D Zakim, and F Zhang, and N Noy, and J A Hamilton
January 1999, Biochimica et biophysica acta,
Copied contents to your clipboard!