Expression of the testis-specific histone H1t gene: evidence for involvement of multiple cis-acting promoter elements. 1995

S A Wolfe, and J M van Wert, and S R Grimes
Research Service (151), Overton Brooks Veterans Administration Medical Center, Shreveport, Louisiana 71101-4295, USA.

The histone H1t gene is expressed exclusively in testis primary spermatocytes. Previous studies indicate that accumulation of H1t mRNA occurs only in primary spermatocytes in normal rats and in transgenic mice bearing the rat H1t transgene. In this study, DNA sequences of human, monkey, mouse, and rat H1t genes were compared and found to be almost identical in the proximal promoter region extending from the H1/AC box through the TATAA box. In addition to conserved elements common to replication-dependent H1 promoters, the H1t promoter contains a unique TE element, and sequences within this element may contribute to enhanced expression of the gene in primary spermatocytes. Two imperfect inverted repeat sequences designated TE1 and TE2, that are located within the larger TE element, overlap a central GC-rich region and bind specifically to nuclear proteins derived from primary spermatocytes. Protein interactions characterized by methylation interference and UV cross-linking experiments indicate that a complex of proteins with a molecular mass of approximately 180 kDa binds TE1. The GC-rich region in H1t and in some replication dependent histone H1 promoters contains an Sp1 consensus sequence. Although the H1t/TE element that contains the GC-rich region binds nuclear proteins, it does not appear to bind Sp1 obtained from cell populations enriched in primary spermatocytes as determined by electrophoretic mobility supershift assays using polyclonal anti-Sp1 antibodies.

UI MeSH Term Description Entries
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000882 Haplorhini A suborder of PRIMATES consisting of six families: CEBIDAE (some New World monkeys), ATELIDAE (some New World monkeys), CERCOPITHECIDAE (Old World monkeys), HYLOBATIDAE (gibbons and siamangs), CALLITRICHINAE (marmosets and tamarins), and HOMINIDAE (humans and great apes). Anthropoidea,Monkeys,Anthropoids,Monkey
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

S A Wolfe, and J M van Wert, and S R Grimes
December 1997, Biology of reproduction,
S A Wolfe, and J M van Wert, and S R Grimes
October 2002, Biology of reproduction,
S A Wolfe, and J M van Wert, and S R Grimes
January 1997, Biology of reproduction,
S A Wolfe, and J M van Wert, and S R Grimes
April 2003, Journal of cellular biochemistry,
S A Wolfe, and J M van Wert, and S R Grimes
January 2003, Gene,
S A Wolfe, and J M van Wert, and S R Grimes
February 2005, Journal of cellular biochemistry,
S A Wolfe, and J M van Wert, and S R Grimes
January 2002, Journal of cellular biochemistry,
S A Wolfe, and J M van Wert, and S R Grimes
April 1989, Science (New York, N.Y.),
S A Wolfe, and J M van Wert, and S R Grimes
June 1986, The Journal of biological chemistry,
S A Wolfe, and J M van Wert, and S R Grimes
February 2004, Journal of cellular biochemistry,
Copied contents to your clipboard!