Copper(II) inhibition of electron transfer through photosystem II studied by EPR spectroscopy. 1995

C Jegerschöld, and J B Arellano, and W P Schröder, and P J van Kan, and M Barón, and S Styring
Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden.

EPR spectroscopy was applied to investigate the inhibition of electron transport in photosystem II by Cu2+ ions. Our results show that Cu2+ has inhibitory effects on both the donor and the acceptor side of photosystem II. In the presence of Cu2+, neither EPR signal IIvery fast nor signal IIfast, which both reflect oxidation of tyrosinez, could be induced by illumination. This shows that Cu2+ inhibits electron transfer from tyrosinez to the oxidized primary donor P680+. Instead of tyrosinez oxidation, illumination results in the formation of a new radical with g = 2.0028 +/- 0.0002 and a spectral width of 9.5 +/- 0.3 G. At room temperature, this radical amounts to one spin per PS II reaction center. Incubation of photosystem II membranes with cupric ions also results in release of the 16 kDa extrinsic subunit and conversion of cytochrome b559 to the low-potential form. On the acceptor side, QA can still be reduced by illumination or chemical reduction with dithionite. However, incubation with Cu2+ results in loss of the normal EPR signal from QA- which is coupled to the non-heme Fe2+ on the acceptor side (the QA(-)-Fe2+ EPR signal). Instead, reduction of QA results in the formation of a free radical spectrum which is 9.5 G wide and centered at g = 2.0044. This signal is attributed to QA- which is magnetically decoupled from the non-heme iron. This suggests that Cu2+ displaces the Fe2+ or severely alters its binding properties. The inhibition of tyrosinez is reversible upon removal of the copper ions with EDTA while the modification of QA was found to be irreversible.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D003573 Cytochrome b Group Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine
D045322 Photosynthetic Reaction Center Complex Proteins Protein complexes that take part in the process of PHOTOSYNTHESIS. They are located within the THYLAKOID MEMBRANES of plant CHLOROPLASTS and a variety of structures in more primitive organisms. There are two major complexes involved in the photosynthetic process called PHOTOSYSTEM I and PHOTOSYSTEM II. Photosynthetic Complex,Photosynthetic Reaction Center,Photosynthetic Reaction Center Complex Protein,Photosynthetic Complexes,Photosynthetic Reaction Centers,Center, Photosynthetic Reaction,Complex, Photosynthetic,Complexes, Photosynthetic,Reaction Center, Photosynthetic,Reaction Centers, Photosynthetic
D045332 Photosystem II Protein Complex A large multisubunit protein complex found in the THYLAKOID MEMBRANE. It uses light energy derived from LIGHT-HARVESTING PROTEIN COMPLEXES to catalyze the splitting of WATER into DIOXYGEN and of reducing equivalents of HYDROGEN. Chloroplast Reaction Center Protein D1,D1 Photosystem II Protein, Plant,Light-Induced D1 Protein, Photosystem II,Oxygen Evolving Enzyme,PRCP II D2 Protein,Photosystem II,Photosystem II Reaction Center,Photosystem II Reaction Center Complex D1 Protein,Photosystem II Reaction Center Complex D2 Protein,RCII-D1 Protein,Water Oxidase,Water-Splitting Enzyme of Photosynthesis,Enzyme, Oxygen Evolving,Evolving Enzyme, Oxygen,Light Induced D1 Protein, Photosystem II,Oxidase, Water,Photosynthesis Water-Splitting Enzyme,Water Splitting Enzyme of Photosynthesis
D018724 Spinacia oleracea A widely cultivated plant, native to Asia, having succulent, edible leaves eaten as a vegetable. (From American Heritage Dictionary, 1982) Spinach

Related Publications

C Jegerschöld, and J B Arellano, and W P Schröder, and P J van Kan, and M Barón, and S Styring
September 1999, Biochemistry,
C Jegerschöld, and J B Arellano, and W P Schröder, and P J van Kan, and M Barón, and S Styring
April 2000, Biochemistry,
C Jegerschöld, and J B Arellano, and W P Schröder, and P J van Kan, and M Barón, and S Styring
August 2002, Biochemistry,
C Jegerschöld, and J B Arellano, and W P Schröder, and P J van Kan, and M Barón, and S Styring
October 1994, Biochemistry,
C Jegerschöld, and J B Arellano, and W P Schröder, and P J van Kan, and M Barón, and S Styring
June 2001, Proceedings of the National Academy of Sciences of the United States of America,
C Jegerschöld, and J B Arellano, and W P Schröder, and P J van Kan, and M Barón, and S Styring
April 1995, Biochemistry,
C Jegerschöld, and J B Arellano, and W P Schröder, and P J van Kan, and M Barón, and S Styring
July 1996, Biochemistry,
C Jegerschöld, and J B Arellano, and W P Schröder, and P J van Kan, and M Barón, and S Styring
January 1986, Photosynthesis research,
C Jegerschöld, and J B Arellano, and W P Schröder, and P J van Kan, and M Barón, and S Styring
June 2007, Photosynthesis research,
C Jegerschöld, and J B Arellano, and W P Schröder, and P J van Kan, and M Barón, and S Styring
January 1985, Photosynthesis research,
Copied contents to your clipboard!