Intermolecular interactions between protein C inhibitor and coagulation proteases. 1995

S T Cooper, and H C Whinna, and T P Jackson, and J M Boyd, and F C Church
Department of Pathology, University of North Carolina School of Medicine, Chapel Hill 27599-7035, USA.

Protein C inhibitor (PCI) inhibits multiple plasma serine proteases. To determine which residues contribute to its specificity of inhibition, 19 mutations in the reactive site loop of PCI (from Thr352 to Arg357) were generated and assayed with thrombin, activated protein C (APC), and factor Xa. To identify the intermolecular interactions responsible for these kinetics, a molecular model of PCI was generated using alpha 1-protease inhibitor and ovalbumin as templates. This model of PCI was docked with thrombin, followed by extensive energy minimization, to determine a lowest energy complex. The resulting docked complex was used as a template to form molecular models of PCI-APC and PCI-factor Xa complexes. The best inhibitors of thrombin contained Pro or Gly at the P2 position in place of Phe353, with 2- and 7-fold increases in activity, respectively. These substitutions reduced steric interactions with the 60-insertion loop unique to thrombin. The best inhibitors of APC and factor Xa contained Arg at the P3 position in place of Thr352, with 2- and 5-fold increases in inhibition rates, respectively. The molecular model predicts that Arg in this position could form a salt bridge with Glu217 of each protease. Changing Arg357 at the P3' position had little effect on protease inhibition, consistent with the observation in the model that this residue points toward the body of PCI, forming a salt bridge with Glu220. Given its broad specificity of inhibition, PCI has proven very useful in understanding the nature of serpin-protease interactions using multiple mutations in a serpin assayed with multiple proteases.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011486 Protein C A vitamin-K dependent zymogen present in the blood, which, upon activation by thrombin and thrombomodulin exerts anticoagulant properties by inactivating factors Va and VIIIa at the rate-limiting steps of thrombin formation.
D001779 Blood Coagulation Factors Endogenous substances, usually proteins, that are involved in the blood coagulation process. Clotting Factor,Coagulation Factors,Blood Coagulation Factor,Clotting Factors,Coagulation Factor,Coagulation Factor, Blood,Coagulation Factors, Blood,Factor, Coagulation,Factors, Coagulation,Factor, Blood Coagulation,Factor, Clotting,Factors, Blood Coagulation,Factors, Clotting
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013917 Thrombin An enzyme formed from PROTHROMBIN that converts FIBRINOGEN to FIBRIN. Thrombase,Thrombin JMI,Thrombin-JMI,Thrombinar,Thrombostat,alpha-Thrombin,beta,gamma-Thrombin,beta-Thrombin,gamma-Thrombin,JMI, Thrombin
D015842 Serine Proteinase Inhibitors Exogenous or endogenous compounds which inhibit SERINE ENDOPEPTIDASES. Serine Endopeptidase Inhibitor,Serine Endopeptidase Inhibitors,Serine Protease Inhibitor,Serine Protease Inhibitors,Serine Proteinase Antagonist,Serine Proteinase Antagonists,Serine Proteinase Inhibitor,Serine Proteinase Inhibitors, Endogenous,Serine Proteinase Inhibitors, Exogenous,Serine Protease Inhibitors, Endogenous,Serine Protease Inhibitors, Exogenous,Antagonist, Serine Proteinase,Endopeptidase Inhibitor, Serine,Inhibitor, Serine Endopeptidase,Inhibitor, Serine Protease,Inhibitor, Serine Proteinase,Protease Inhibitor, Serine,Proteinase Antagonist, Serine,Proteinase Inhibitor, Serine
D015843 Serpins A family of serine proteinase inhibitors which are similar in amino acid sequence and mechanism of inhibition but differ in their specificity toward proteolytic enzymes. Some members of the serpin family may be substrates rather than inhibitors of SERINE ENDOPEPTIDASES. Serpin,Serpin Superfamily,Serpin Peptidase Inhibitors,Serpin Protease Inhibitors,Inhibitors, Serpin Peptidase,Inhibitors, Serpin Protease,Peptidase Inhibitors, Serpin,Protease Inhibitors, Serpin,Superfamily, Serpin
D015951 Factor Xa Activated form of factor X that participates in both the intrinsic and extrinsic pathways of blood coagulation. It catalyzes the conversion of prothrombin to thrombin in conjunction with other cofactors. Autoprothrombin C,Coagulation Factor Xa,Factor X, Activated,Thrombokinase,Activated Factor X,Blood Coagulation Factor X, Activated,Factor 10A,Factor Ten A,Factor Xa, Coagulation

Related Publications

S T Cooper, and H C Whinna, and T P Jackson, and J M Boyd, and F C Church
October 2016, Thrombosis research,
S T Cooper, and H C Whinna, and T P Jackson, and J M Boyd, and F C Church
January 1984, Advances in experimental medicine and biology,
S T Cooper, and H C Whinna, and T P Jackson, and J M Boyd, and F C Church
April 2013, Carbohydrate polymers,
S T Cooper, and H C Whinna, and T P Jackson, and J M Boyd, and F C Church
September 1988, Journal of biochemistry,
S T Cooper, and H C Whinna, and T P Jackson, and J M Boyd, and F C Church
May 1984, Polskie Archiwum Medycyny Wewnetrznej,
S T Cooper, and H C Whinna, and T P Jackson, and J M Boyd, and F C Church
January 2000, Advances in enzyme regulation,
S T Cooper, and H C Whinna, and T P Jackson, and J M Boyd, and F C Church
June 2009, Journal of molecular biology,
S T Cooper, and H C Whinna, and T P Jackson, and J M Boyd, and F C Church
July 2019, Journal of molecular biology,
S T Cooper, and H C Whinna, and T P Jackson, and J M Boyd, and F C Church
August 1982, Lancet (London, England),
S T Cooper, and H C Whinna, and T P Jackson, and J M Boyd, and F C Church
March 2022, ACS chemical biology,
Copied contents to your clipboard!