Neuroanatomical and neurochemical mechanisms underlying amygdaloid control of defensive rage behavior in the cat. 1994

M B Shaikh, and A Siegel
Department of Neurosciences, New Jersey Medical School, Newark 07103, USA.

1. It is well established that the hypothalamus and midbrain periaqueductal gray (PAG) play important roles in the expression of defensive rage behavior. While defensive rage is not elicited from the amygdala, this region of the limbic system nevertheless serves an important role in the modulation of defensive rage behavior. The present paper attempts to address the question of how the amygdala modulates defensive rage behavior in the cat. The studies were conducted using brain stimulation, pharmacological, neuroanatomical and immunocytochemical methods to identify the likely neural pathways and their associated neurotransmitters by which different regions of the amygdala modulate defensive rage behavior in the cat. 2. The experimental evidence provided thus far establishes that three regions of the amygdala have been identified as powerful modulators of defensive rage behavior. These include the medial nucleus, basal complex and central nucleus of the amygdala. Experiments involving dual stimulation of an amygdaloid nucleus and sites within the medial hypothalamus or PAG from which defensive rage behavior was elicited demonstrated that two of the regions facilitated defensive rage --the medial nucleus and basal complex--and a third region--the central nucleus--suppressed defensive rage. The mechanisms and substrates underlying modulation for each of these regions are different. Medial amygdaloid facilitation of defensive rage involves a pathway (i.e., the stria terminalis) that projects directly to the medial hypothalamus and utilizes substance P as a neurotransmitter. Basal amygdaloid facilitation of defensive rage behavior makes use of a pathway to the PAG in which excitatory amino acids acting on NMDA receptors are utilized as a neurotransmitter. The central nucleus also projects to the PAG. However, it is strongly inhibitory and utilizes enkephalins that act upon mu receptors within the PAG.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008297 Male Males
D010487 Periaqueductal Gray Central gray matter surrounding the CEREBRAL AQUEDUCT in the MESENCEPHALON. Physiologically it is probably involved in RAGE reactions, the LORDOSIS REFLEX; FEEDING responses, bladder tonus, and pain. Mesencephalic Central Gray,Midbrain Central Gray,Central Gray Substance of Midbrain,Central Periaqueductal Gray,Griseum Centrale,Griseum Centrale Mesencephali,Periaqueductal Gray Matter,Substantia Grisea Centralis,Substantia Grisea Centralis Mesencephali,Central Gray, Mesencephalic,Central Gray, Midbrain,Gray Matter, Periaqueductal,Gray, Central Periaqueductal,Griseum Centrale Mesencephalus,Periaqueductal Grays, Central
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D000374 Aggression Behavior which may be manifested by destructive and attacking action which is verbal or physical, by covert attitudes of hostility or by obstructionism. Aggressions
D000679 Amygdala Almond-shaped group of basal nuclei anterior to the INFERIOR HORN OF THE LATERAL VENTRICLE of the TEMPORAL LOBE. The amygdala is part of the limbic system. Amygdaloid Body,Amygdaloid Nuclear Complex,Amygdaloid Nucleus,Archistriatum,Corpus Amygdaloideum,Intercalated Amygdaloid Nuclei,Massa Intercalata,Nucleus Amygdalae,Amygdalae, Nucleus,Amygdaloid Bodies,Amygdaloid Nuclear Complices,Amygdaloid Nuclei, Intercalated,Amygdaloid Nucleus, Intercalated,Amygdaloideum, Corpus,Amygdaloideums, Corpus,Archistriatums,Complex, Amygdaloid Nuclear,Complices, Amygdaloid Nuclear,Corpus Amygdaloideums,Intercalata, Massa,Intercalatas, Massa,Intercalated Amygdaloid Nucleus,Massa Intercalatas,Nuclear Complex, Amygdaloid,Nuclear Complices, Amygdaloid,Nuclei, Intercalated Amygdaloid,Nucleus, Amygdaloid,Nucleus, Intercalated Amygdaloid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors

Related Publications

M B Shaikh, and A Siegel
January 1999, Neuroscience and biobehavioral reviews,
M B Shaikh, and A Siegel
January 1981, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
M B Shaikh, and A Siegel
January 1974, Acta neurobiologiae experimentalis,
M B Shaikh, and A Siegel
October 1963, Archives italiennes de biologie,
M B Shaikh, and A Siegel
January 1998, Alcohol health and research world,
Copied contents to your clipboard!