cGMP and atrial natriuretic factor regulate cell volume of rabbit atrial myocytes. 1995

H F Clemo, and C M Baumgarten
Department of Internal Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, USA.

Atrial natriuretic factor (ANF) reduces the volume of atrial myocytes by inhibiting Na+/K+/2Cl- cotransport. We determined the role of cGMP and cAMP in ANF-induced shrinkage by using digital video microscopy to measure cell volume; volumes are reported relative to control. ANF (1 mumol/L) reversibly reduced atrial cell volume from 1.0 to 0.915 +/- 0.005 (mean +/- SEM). This effect was mimicked by 10 mumol/L 8-bromo-cGMP (8-Br-cGMP), which decreased myocyte volume to 0.894 +/- 0.007 with an ED50 of 0.99 +/- 0.05 mumol/L. In contrast, 100 mumol/L 8-bromo-cAMP (8-Br-cAMP) did not affect volume, and activating the cAMP pathway with 100 mumol/L 8-Br-cAMP did not alter the volume decrease caused by 8-Br-cGMP or ANF. Inhibition of Na+/K+/2Cl- cotransport with bumetanide (1 mumol/L) also reduced cell volume and prevented further shrinkage on subsequent exposure to 8-Br-cGMP. Similarly, 8-Br-cGMP (10 mumol/L) prevented further shrinkage by ANF. Block of Na(+)-H+ exchange, a participant in volume regulation in other cells, did not alter the response to 8-Br-cGMP. More evidence implicating cGMP was obtained by altering its metabolism. LY83583 (10 mumol/L), a guanylate cyclase inhibitor, blocked ANF-induced cell shrinkage. Zaprinast (100 mumol/L), a cGMP-specific phosphodiesterase inhibitor, markedly potentiated the effect of a threshold concentration of ANF (0.01 mumol/L). The actions of ANF, LY83583, and zaprinast on cGMP levels were verified by radioimmunoassay. These data strongly support the idea that the cGMP cascade is the intracellular signaling pathway responsible for ANF-induced atrial cell shrinkage.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D006325 Heart Atria The chambers of the heart, to which the BLOOD returns from the circulation. Heart Atrium,Left Atrium,Right Atrium,Atria, Heart,Atrium, Heart,Atrium, Left,Atrium, Right
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015290 Second Messenger Systems Systems in which an intracellular signal is generated in response to an intercellular primary messenger such as a hormone or neurotransmitter. They are intermediate signals in cellular processes such as metabolism, secretion, contraction, phototransduction, and cell growth. Examples of second messenger systems are the adenyl cyclase-cyclic AMP system, the phosphatidylinositol diphosphate-inositol triphosphate system, and the cyclic GMP system. Intracellular Second Messengers,Second Messengers,Intracellular Second Messenger,Messenger, Second,Messengers, Intracellular Second,Messengers, Second,Second Messenger,Second Messenger System,Second Messenger, Intracellular,Second Messengers, Intracellular,System, Second Messenger,Systems, Second Messenger
D016275 Atrial Function The hemodynamic and electrophysiological action of the HEART ATRIA. Atrial Functions,Function, Atrial,Functions, Atrial
D017136 Ion Transport The movement of ions across energy-transducing cell membranes. Transport can be active, passive or facilitated. Ions may travel by themselves (uniport), or as a group of two or more ions in the same (symport) or opposite (antiport) directions. Antiport,Ion Cotransport,Ion Exchange, Intracellular,Symport,Uniport,Active Ion Transport,Facilitated Ion Transport,Passive Ion Transport,Cotransport, Ion,Exchange, Intracellular Ion,Intracellular Ion Exchange,Ion Transport, Active,Ion Transport, Facilitated,Ion Transport, Passive,Transport, Active Ion,Transport, Ion
D048429 Cell Size The quantity of volume or surface area of CELLS. Cell Volume,Cell Sizes,Cell Volumes,Size, Cell,Sizes, Cell,Volume, Cell,Volumes, Cell

Related Publications

H F Clemo, and C M Baumgarten
March 1992, Molecular endocrinology (Baltimore, Md.),
H F Clemo, and C M Baumgarten
May 1994, Journal of clinical pharmacology,
H F Clemo, and C M Baumgarten
January 1993, The American journal of physiology,
H F Clemo, and C M Baumgarten
June 1996, Kidney international,
H F Clemo, and C M Baumgarten
August 1988, The American journal of physiology,
H F Clemo, and C M Baumgarten
September 1989, The European journal of neuroscience,
H F Clemo, and C M Baumgarten
September 1989, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!