M-wave modulation at relative levels of maximal voluntary contraction. 1995

A Nagata, and J C Christianson
Waseda University, School of Human Sciences, Saitama-ken, Japan.

Frequency (mean and median power frequency, f and fm) and amplitude (average rectified and root mean square values, ARV and rms), parameters of the M-wave, and the dorsiflexor force parameters of the anterior tibial muscles were measured in seven healthy human subjects. Intermittent, voluntary contractions at relative intensities (40%, 60%, and 80%) of maximal voluntary contraction (MVC) were performed in conjunction with electrical stimulation. The M-wave parameter changes were measured over the course of the isometric contractions. At higher force levels, M-wave potentiation was observed as increases in both ARV and rms. The ARV augmentation attained levels as high as 206.1 (SD 7.4)% of resting values after both initial and final contractions of 80% MVC, reaching statistical significance (P < 0.01). The f and fm failed to show a significant difference at any level of contraction. It was surmised that potentiation of the M-wave was the result of an increased contribution of muscle fibre type IIb recruited during higher contraction levels, reflecting the change to larger, deeper innervating motoneurons as the intensity of contraction, as a percentage of MVC, rose. Recruitment of type IIb fibres, which have been reported to have a higher energy potential and frequency content, were thought to reflect changes in the local excitability threshold of some motor units as the force intensity increased during the intermittent voluntary contractions. It is suggested that the M-wave elicited after contractions has the potential to reflect, to some extent, motor unit recruitment changes resulting from the preceding contractions, and that through comparisons of M-wave amplitude parameters contributions of varying fibre types over the course of a contraction may be indicated.

UI MeSH Term Description Entries
D007866 Leg The inferior part of the lower extremity between the KNEE and the ANKLE. Legs
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

A Nagata, and J C Christianson
April 2007, Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology,
A Nagata, and J C Christianson
August 2013, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society,
A Nagata, and J C Christianson
April 1993, Perceptual and motor skills,
A Nagata, and J C Christianson
January 2001, Acta physiologica et pharmacologica Bulgarica,
A Nagata, and J C Christianson
August 2011, European journal of applied physiology,
A Nagata, and J C Christianson
March 1988, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!