Increased susceptibility of ras-transformed cells to phenylacetate is associated with inhibition of p21ras isoprenylation and phenotypic reversion. 1995

S Shack, and L C Chen, and A C Miller, and R Danesi, and D Samid
Clinical Pharmacology Branch, National Cancer Institute, Bethesda, MD, USA.

Alterations in the expression of ras oncogenes are characteristic of a wide variety of human neoplasms. Accumulating evidence has linked elevated ras expression with disease progression and with failure of tumors to respond to conventional therapies, including radiotherapy and certain chemotherapies. These observations led us to investigate the response of ras-transformed cells to the differentiation-inducer phenylacetate (PA). Using gene transfer models, we show that PA caused cytostasis in ras-transformed mesenchymal cells, associated with increased expression of 2',5'-oligoadenylate synthetase, an enzyme implicated in negative growth control. PA also induced phenotypic reversion characterized by loss of anchorage-independent growth, reduced invasiveness and increased expression of collagen alpha type I, a marker of cell differentiation. The anti-tumor activity of PA was observed in cases involving either Ha- or Ki-ras and was independent of the mode of oncogene activation. Interestingly, in contrast to their relative resistance to radiation and doxorubicin, ras-transformed cells were significantly more sensitive to PA than their parental cells. The profound changes in tumor cell and molecular biology were associated with reduced isoprenylation of the ras-encoded p21. Our results indicate that PA can suppress the growth of ras-transformed cells, resistant otherwise to free-radical based therapies, through interference with p21ras isoprenylation, critical to signal transduction and maintenance of the malignant phenotype.

UI MeSH Term Description Entries
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010648 Phenylacetates Derivatives of phenylacetic acid. Included under this heading are a variety of acid forms, salts, esters, and amides that contain the benzeneacetic acid structure. Note that this class of compounds should not be confused with derivatives of phenyl acetate, which contain the PHENOL ester of ACETIC ACID. Benzeneacetates,Benzeneacetic Acids,Phenylacetic Acids,Acids, Benzeneacetic,Acids, Phenylacetic
D011905 Genes, ras Family of retrovirus-associated DNA sequences (ras) originally isolated from Harvey (H-ras, Ha-ras, rasH) and Kirsten (K-ras, Ki-ras, rasK) murine sarcoma viruses. Ras genes are widely conserved among animal species and sequences corresponding to both H-ras and K-ras genes have been detected in human, avian, murine, and non-vertebrate genomes. The closely related N-ras gene has been detected in human neuroblastoma and sarcoma cell lines. All genes of the family have a similar exon-intron structure and each encodes a p21 protein. Ha-ras Genes,Ki-ras Genes,N-ras Genes,c-Ha-ras Genes,c-Ki-ras Genes,c-N-ras Genes,ras Genes,v-Ha-ras Genes,v-Ki-ras Genes,H-ras Genes,H-ras Oncogenes,Ha-ras Oncogenes,K-ras Genes,K-ras Oncogenes,Ki-ras Oncogenes,N-ras Oncogenes,c-H-ras Genes,c-H-ras Proto-Oncogenes,c-Ha-ras Proto-Oncogenes,c-K-ras Genes,c-K-ras Proto-Oncogenes,c-Ki-ras Proto-Oncogenes,c-N-ras Proto-Oncogenes,ras Oncogene,v-H-ras Genes,v-H-ras Oncogenes,v-Ha-ras Oncogenes,v-K-ras Genes,v-K-ras Oncogenes,v-Ki-ras Oncogenes,Gene, Ha-ras,Gene, Ki-ras,Gene, v-Ha-ras,Gene, v-Ki-ras,Genes, Ha-ras,Genes, Ki-ras,Genes, N-ras,Genes, v-Ha-ras,Genes, v-Ki-ras,H ras Genes,H ras Oncogenes,H-ras Gene,H-ras Oncogene,Ha ras Genes,Ha ras Oncogenes,Ha-ras Gene,Ha-ras Oncogene,K ras Genes,K ras Oncogenes,K-ras Gene,K-ras Oncogene,Ki ras Genes,Ki ras Oncogenes,Ki-ras Gene,Ki-ras Oncogene,N ras Genes,N ras Oncogenes,N-ras Gene,N-ras Oncogene,c H ras Genes,c H ras Proto Oncogenes,c Ha ras Genes,c Ha ras Proto Oncogenes,c K ras Genes,c K ras Proto Oncogenes,c Ki ras Genes,c Ki ras Proto Oncogenes,c N ras Genes,c N ras Proto Oncogenes,c-H-ras Gene,c-H-ras Proto-Oncogene,c-Ha-ras Gene,c-Ha-ras Proto-Oncogene,c-K-ras Gene,c-K-ras Proto-Oncogene,c-Ki-ras Gene,c-Ki-ras Proto-Oncogene,c-N-ras Gene,c-N-ras Proto-Oncogene,ras Gene,ras Oncogenes,v H ras Genes,v H ras Oncogenes,v Ha ras Genes,v Ha ras Oncogenes,v K ras Genes,v K ras Oncogenes,v Ki ras Genes,v Ki ras Oncogenes,v-H-ras Gene,v-H-ras Oncogene,v-Ha-ras Gene,v-Ha-ras Oncogene,v-K-ras Gene,v-K-ras Oncogene,v-Ki-ras Gene,v-Ki-ras Oncogene
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D006131 Growth Inhibitors Endogenous or exogenous substances which inhibit the normal growth of human and animal cells or micro-organisms, as distinguished from those affecting plant growth ( Cell Growth Inhibitor,Cell Growth Inhibitors,Growth Inhibitor,Growth Inhibitor, Cell,Growth Inhibitors, Cell,Inhibitor, Cell Growth,Inhibitor, Growth,Inhibitors, Cell Growth,Inhibitors, Growth
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000964 Antimetabolites, Antineoplastic Antimetabolites that are useful in cancer chemotherapy. Antineoplastic Antimetabolites
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

S Shack, and L C Chen, and A C Miller, and R Danesi, and D Samid
January 1993, International journal of cancer,
S Shack, and L C Chen, and A C Miller, and R Danesi, and D Samid
September 2004, The Journal of biological chemistry,
S Shack, and L C Chen, and A C Miller, and R Danesi, and D Samid
January 1990, Immunology series,
S Shack, and L C Chen, and A C Miller, and R Danesi, and D Samid
December 1994, Oncogene,
S Shack, and L C Chen, and A C Miller, and R Danesi, and D Samid
February 1981, Cell biology international reports,
S Shack, and L C Chen, and A C Miller, and R Danesi, and D Samid
June 1996, Cancer research,
S Shack, and L C Chen, and A C Miller, and R Danesi, and D Samid
August 2008, Cancer chemotherapy and pharmacology,
S Shack, and L C Chen, and A C Miller, and R Danesi, and D Samid
December 2005, Journal of virology,
S Shack, and L C Chen, and A C Miller, and R Danesi, and D Samid
April 2000, Biochimica et biophysica acta,
S Shack, and L C Chen, and A C Miller, and R Danesi, and D Samid
October 1994, Experimental cell research,
Copied contents to your clipboard!