Evolution of the rDNA spacer, ITS 2, in the ticks Ixodes scapularis and I. pacificus (Acari: Ixodidae). 1995

D K McLain, and D M Wesson, and F H Collins, and J H Oliver
Department of Biology, Georgia Southern University, Statesboro 30460-8042, USA.

Evolution of the rDNA spacer, ITS 2, is examined by comparing 17 DNA sequences of the ticks, Ixodes scapularis and I. pacificus. The distribution of fixed interspecific differences and the relative frequency of base changes vs. insertions/deletions (indels) matches the distribution and relative frequency for intraspecifically variable sites. This suggests that most intraspecific variation is not effectively selected against. The base composition of the ITS 2 transcript is G- and U-biased. But, 5-base regions enriched (> 80 per cent) for A or U occur more frequently than expected while G- and C-enriched regions occur less frequently than expected. Enriched sequences may be prone to replication slippage, accounting for the A/T bias in insertions. Slippage-mediated gains and losses of A/T-rich tandem repeats apparently account for most indels. Minimum-energy conformations of the two species' folded transcripts share major structural features. Structural inertia arises from intramolecular base pairing within stems that allows most mutations to be absorbed as new bulges off stems. Yet, there is evidence of selection to maintain the conformation. First, intraspecifically variable sites are concentrated at the ends of stems in loops and intersections, structures that do not contribute to intramolecular base pairing. Moreover, some indels that have become fixed in one species compensate for the presence of conformation-destabilizing indels. However, high rates of sequence evolution within stems and absence of compensatory base evolution contraindicates selective constraint. Degenerate dispersed and tandem copies of two subrepeats, each approximately 20 bases long, may account for much of the ITS 2 sequence. These are approximately inverses of each other and are, consequently, capable of significant intramolecular hydrogen bonding to produce folded transcripts of low energy. Evolution of the ITS 2 sequence may largely entail replication slippage-mediated gains and losses of these repeats or their composite subrepeats.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013987 Ticks Blood-sucking acarid parasites of the order Ixodida comprising two families: the softbacked ticks (ARGASIDAE) and hardbacked ticks (IXODIDAE). Ticks are larger than their relatives, the MITES. They penetrate the skin of their host by means of highly specialized, hooked mouth parts and feed on its blood. Ticks attack all groups of terrestrial vertebrates. In humans they are responsible for many TICK-BORNE DISEASES, including the transmission of ROCKY MOUNTAIN SPOTTED FEVER; TULAREMIA; BABESIOSIS; AFRICAN SWINE FEVER; and RELAPSING FEVER. (From Barnes, Invertebrate Zoology, 5th ed, pp543-44) Ixodida,Ixodidas,Tick

Related Publications

D K McLain, and D M Wesson, and F H Collins, and J H Oliver
January 1993, Journal of medical entomology,
D K McLain, and D M Wesson, and F H Collins, and J H Oliver
September 1998, Journal of medical entomology,
D K McLain, and D M Wesson, and F H Collins, and J H Oliver
May 1990, Journal of medical entomology,
D K McLain, and D M Wesson, and F H Collins, and J H Oliver
March 2016, Journal of medical entomology,
D K McLain, and D M Wesson, and F H Collins, and J H Oliver
February 1996, The Journal of parasitology,
D K McLain, and D M Wesson, and F H Collins, and J H Oliver
September 2016, Journal of medical entomology,
D K McLain, and D M Wesson, and F H Collins, and J H Oliver
February 2018, Ticks and tick-borne diseases,
D K McLain, and D M Wesson, and F H Collins, and J H Oliver
June 2010, Journal of vector ecology : journal of the Society for Vector Ecology,
D K McLain, and D M Wesson, and F H Collins, and J H Oliver
June 2007, Journal of vector ecology : journal of the Society for Vector Ecology,
D K McLain, and D M Wesson, and F H Collins, and J H Oliver
October 2016, Ticks and tick-borne diseases,
Copied contents to your clipboard!