Phosphatidylcholines with sn-1 saturated and sn-2 cis-monounsaturated acyl chains. Their melting behavior and structures. 1995

G Wang, and H N Lin, and S Li, and C H Huang
Department of Biochemistry, University of Virginia, Charlottesville 22908, USA.

Recently, we have shown by high resolution differential scanning calorimetry that the position of a cis double bond (delta-bond) in a series of 1-stearoyl-2-octadecenoyl- phosphatidylcholines can affect the phase transition temperature (Tm) or enthalpy (delta H) of the gel-to-liquid crystalline phase transition of this series of lipids in the following manner. The value of Tm (or delta H) is minimal when the delta-bond is positioned at C(11) in the sn-2 acyl chain; in addition, this value increases steadily as the delta-bond migrates toward either end of the acyl chain, resulting in a symmetrical, inverted bell-shaped profile (Wang, Z.-q., Lin, H.-n., Li, S., and Huang, C. (1995) J. Biol. Chem. 270, 2014-2023). In this communication, we have further demonstrated the inverted bell-shaped profile of Tm using 1-arachidoyl-2-eicosenoyl-phosphatidylcholines. In addition, we have extended the lipid series of 1-stearoyl-2-octadecenoyl-phosphatidylcholines to include 1-arachidoyl-2-octadecenoyl- phosphatidylcholines and 1-behenoyl-2-octadecenoyl-phosphatidylcholine, each series with a delta-bond at varying carbon position of 6, 7, 9, 11, 12, and 13. Calorimetric results obtained with these three series of lipids indicate that the inverted bell-shaped curve shifts toward higher temperatures in a nonuniform manner as the saturated sn-1 acyl chain length increases from 17 to 19 and then to 21 C-C bond lengths. Specifically, the Tm (or delta H) values are nearly identical for these cis-monoenoic lipids when their delta-bonds are positioned at C(13). Based on the height of the rotational energy barrier obtained with molecular mechanics calculations, it is evident that the rotational flexibility of the single C-C bond adjacent to the delta-bond in 1-stearoyl-2-octadecenoyl-phosphatidylcholine increases as the delta-bond migrates from C(9) to C(13). The differential scanning calorimetry results obtained with the three series of lipids can thus be attributed to an increase in the rotational flexibility of the short chain segment succeeding the C(14) atom in the sn-2 octadecenoyl chain. In this communication, we also propose that in the gel-state bilayer of sn-1 saturated/sn-2 cis-monounsaturated phosphatidylcholine the entire length of the shorter segment of the sn-2 acyl chain acts as a structural perturbing element; hence, it is mainly responsible for the large lower Tm of the monoenoic lipid relative to the saturated counterpart. Finally, two general equations relating Tm with the structural parameters of cis-monoenoic phosphatidylcholines are presented.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D009829 Oleic Acids A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon. Octadecenoic Acids,Acids, Octadecenoic,Acids, Oleic
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D005229 Fatty Acids, Monounsaturated Fatty acids which are unsaturated in only one position. Monounsaturated Fatty Acid,Acid, Monounsaturated Fatty,Acids, Monounsaturated Fatty,Fatty Acid, Monounsaturated,Monounsaturated Fatty Acids
D013229 Stearic Acids A group of compounds that are derivatives of octadecanoic acid which is one of the most abundant fatty acids found in animal lipids. (Stedman, 25th ed) Dihydrooleic Acids,Octadecanoic Acids,Tetrahydrolinoleic Acids,Acids, Dihydrooleic,Acids, Octadecanoic,Acids, Stearic,Acids, Tetrahydrolinoleic
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D019301 Oleic Acid An unsaturated fatty acid that is the most widely distributed and abundant fatty acid in nature. It is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. (Stedman, 26th ed) 9-Octadecenoic Acid,Oleate,cis-9-Octadecenoic Acid,9 Octadecenoic Acid,cis 9 Octadecenoic Acid

Related Publications

G Wang, and H N Lin, and S Li, and C H Huang
July 1989, Biophysical journal,
G Wang, and H N Lin, and S Li, and C H Huang
July 1998, Biochimica et biophysica acta,
G Wang, and H N Lin, and S Li, and C H Huang
July 1979, Biochimica et biophysica acta,
Copied contents to your clipboard!